Computer and Network
SY-1dV] 14Y

Lecture 03:
Hashing and Integrity

/g

0
O
an
od
w
e
<

What's 1+17?

Malicious Mallory

What's 1+17?

1,384,353 2

N\

| don’t think so

roperties of Secure Channel TENT
roper 1eS O ecure anne E

A secure channel is a mechanism that allows
Alice and Bob to communicate with the
properties of:

Confidentiality

- Messages can’t be read by a 3" party (3P)
Message Integrity

= Messages can’t be unknowingly modified by 3P
Sender Authenticity

= Valid messages creatable only by a 1P actor

WARNING ’A‘

N~ 4

| AM NOT A
CRYPTOGRAPHER

WARNING ’A‘

N~ 4

YOU ARE NOT A
CRYPTOGRAPHER

THE FIRST RULE OF CRYPTO

'S <.
o -

~ /
—

—

Building a Secure Channel T@A{

\ 4

@ Confidentiality
@ Message Integrity -
@ Sender Authenticity

What's 1+17?

(2

Thinking about Properties

3\

Intelligent Actor

= Person, Group, or
Organization

Have own:

= Capabilities

= Motivations

= Intentions
Are NOT restricted
by expectations

Adversary

Threat Modeling

A systematic approach to analyzing and
understanding potential weaknesses.

Enumerate
Mitigation
Options

Identify
Potential
Weaknesses

B

L
Evaluate

Mitigate Trade-Offs

For message integrity,
who should we be
worried about?

Py

Thinking about Properties ?Aﬁ;..‘l

N\~
Adversary A‘ Threat Modeling .é.

—r
Intelligent Actor A systematic approach to analyzing and
= Person, Group, or understanding potential weaknesses.
Organization

Have own: Identify Enumerate

- Potential Mitigation
= Capabilities Weaknesses Options
= Motivations

- Intentions y
Are NOT restricted
by expectations

L
Evaluate

Mitigate _Trade-Offs 7

For message integrity, ‘
who should we be
worried about?

Building a Secure Channel T@A{

\ 4

@ Confidentiality
@ Message Integrity
@ | Sender Authenticity

What's 1+17?

(2

/g

What's 1+17?

1,384,353 2

Really? ' :
I . What? N
at? No
_) \ ,

What's 1+17?

1,384,353

Message Authentication

Code (MACQ)

Desired attributes of a MAC:
= Doesn’t grow with message length

= Easy to compute and verify for Alice & Bob
= Hard for not-Alice/-Bob to create/verify

What's 1+17?

2, <MAC>

Pseudorandom Function (PRF) A‘l
N 4

A pseudorandom function (PRF) mimics
(but is not) random output regardless of the
input.

Deterministic mapping between in/out

* (input, -> output,)

* (input, -> output)

Output always “looks” random

If input is unknown, infeasible to recover
from output

Hash Function AT

\ 4

H(x) =y
= Function [H]

= 100% public and deterministic

= Input [Xx]
= Arbitrary length data

= Qutput [y]
= Fixed-length “digest”

Cryptographic Hash Function A‘l

Collision Resistance

= Hard to find x4 and x, such that H(x,) == H(x5)
Preimage Resistance

= Given H(x), hard to find x
Second Preimage Resistance

= Given x4, hard to find x, such that H(x,) == H(x,)
Change Propagation

= Small input changes make big output changes

Common Hash Functions A‘l

N~ 4

| Constructon | Year ____
MBé :

Merkle-Damgérd— 1002 ..

SHA1 Merkle—Damgard 1995
SHAZ2 (family) Merkle—-Damgard 2001
SHA3/SHAKE (family) Sponge 2015
MD5
1992 — 2004

Trivial effort to collide

Known use by attackers
NEVER USE...EVER

MDs5 Collisions

MD)5 To Be Considered Harmful Someday

Dan Kaminsky

MD5 considered harmful today

Creating a rogue CA certificate

December 30, 2008 Alexander Sotirov, Ma_rc Stevens,
Jacob Appelbaum, Arjen Lenstra, David Molnar, Dag Arne Osvik, Benne de Weger

Common Hash Functions A‘l

N~ 4

Construction Year

Merkle-Damgérd— 1002 ..

MBé

Sk~ VieTkie=Damgard r995

SHAZ2 (family) Merkle—-Damgard 2001

SHA3/SHAKE (family) Sponge 2015

MD5 SHA1

1992 — 2004 1995 — 2017
Trivial effort to collide Can collide with major effort
Known use by attackers Do not use in new systems

NEVER USE...EVER Start moving away from

SHAz1 Collision

We have broken SHA-1 in practice. Collision attack: same hashes

This industry cryptographic hash function
standard is used for digital signatures and file

integrity verification, and protects a wide
spectrum of digital assets, including credit card
transactions, electronic documents, open-source 8

software repositories and software updates. Sha-1

It is now practically possible to craft two colliding
PDF files and obtain a SHA-1 digital signature on
the first PDF file which can also be abused as a

valid signature on the second PDF file. -B N
For example, by crafting the two colliding PDF files @ a8
as two rental agreements with different rent, it is >

possible to trick someone to create a valid
signature for a high-rent contract by having him
or her sign a low-rent contract.

Infographic | Paper

SHA1 Collision

SHAttered SHAttered

The first concrete collision attack against SHA-1 The first concrete collision attack against SHA-1
https://shattered.io https://shattered.io

Wl Googe g Google

Elie Bursztein Elie Bursztein

PMa'C Etevens Ange Albertini PMarc Etevens Ange Albertini
ierre Karpman Yarik Markov Ierearpman Yarik Markov

Common Hash Functions A‘l

N~ 4

Construction Year

Merkle-Damgérd— 1002 ..

MBé

Sk~ VieTkie=Damgard r995

SHAZ2 (family) Merkle—-Damgard 2001

SHA3/SHAKE (family) Sponge 2015

MD5 SHA1

1992 — 2004 1995 — 2017
Trivial effort to collide Can collide with major effort
Known use by attackers Do not use in new systems

NEVER USE...EVER Start moving away from

SHA2 Family H

N~ 4

Not perfect but not completely broken
Comes in a variety of sizes

= 224, 256, 384, and 512 bits

= SHA-256 == 256-bit digest

SHA-256 is OK and widely used
SHA-384 is approved for CNSA Suite
SHAZS3 is OK but relatively low-usage

/g

N~ 4

Use SHA256 as MAC?

= Doesn’t grow with message length
= Easy to compute and verify for Alice & Bob
—Hard-fernot-Alice/~Bob-tocreate—

What's 1+17?

2, SHA256(2)

/g

N~ 4

Use SHA256 as MAC?

= Doesn’t grow with message length
= Easy to compute and verify for Alice & Bob
—Hard-fernot-Alice/~Bob-tocreate—

What's 1+17?

) 1,384,353, 2, SHA256(2)
SHA256(1,384,353) N\

| can do that too.

Safely Using a Hash Function

Hash functions are still very, very useful.

H(x) =y
Function [H]
= 100% public and deterministic

Input [x]
= Arbitrary length data

Output [y]
= Fixed-length “digest”

Collision Resistance

= Hard to find x; and x, such that H(x,) == H(x,)
Preimage Resistance

= Given H(x), hard to find x

Second Preimage Resistance

= Given x4, hard to find x, such that H(x,) == H(x,)
Change Propagation

= Small input changes make big output changes

Where/When can you
**safely™ use a raw hash?

/g

N~ 4

Use SHA256 as MAC?

= Easy to compute and verify for Alice & Bob
= Doesn’'t grow with message length
—Hard-fernot-Alice/~Bob-tocreate—

What's 1+17?

) 1,384,353, 2, SHA256(2)
SHA256(1,384,353) N\

| can do that too.

H(s || x) =y
Function [H]

= 100% public and deterministic
Secret [s]

= |Is only known to 1P actors
Input [Xx]

= Arbitrary length data
Output [y]

= Fixed-length “digest”

/g

N~ 4

Use SHA256 w/ secret as MAC?

= Easy to compute and verify for Alice & Bob
= Doesn’'t grow with message length
—Hard-fernot-Alice/~Bob-tocreate—

What's 1+17?

2, SHA256(s || 2)

Merkle—-Damgard

Many hash functions use Merkle-Damgard
construction with a hash-specific

compression function.

Message
block 1

Message
block 2

Message
block 1

Message
block 2

\

x--

Message
block n

Message
block n

Length
padding

J

J

Break message into
constant-size blocks
Static internal-state

and output size
Pad to block-length

Finali-
sation

Length Extension Attacks ?Aﬁ;..‘

N~ 4

An attacker uses a known-hash for a known-

length but unknown-content message to
create hash for a partially-controlled

message prefixed by the unknown message.

Message | Message Message
block 1 | block 2 block n
Message | Message | Message | Length
block 1 | block 2 block n | padding

I TR Y
@—»f-»f----»f—»f—»lr;?g:—»

Attack Example (simplified) ,AT

N~ 4

o [res] —
daaa

OxFFFF 0x0004

aaaa OxXFFFF 0x0004

I

Original hash’s state 3P msg 3P pad

i)

aaaal | OXFFFF| | 0x0004 bbbb OxFFFF 0x0010

Attack Example (simplified)

= 1P message: “Let’'s go to the mall”
= 3P message: “next week”

= Message according to hash function:
‘Let’s go to the mall’
+ padding
+ length
+ ‘next week’

Attack Example (URL)
Source: https://en.wikipedia.org/wiki/Length_extension_attack V

1P msg

1P pad - 3P msg 3P pad %

order.com/count=10&lat=37.351l&user id=l&long=-119.827&waffle=eggo

= Change to different type of waffle

waffle=liege

order.com/count=10&lat=37.35l&user id=l&long=-
119.827&waffle=eggo\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x02\x28&waffle=liege

Attack Example (URL)
Source: https://en.wikipedia.org/wiki/Length_extension_attack V

1P msg

1P pad - 3P msg 3P pad %

order.com/count=10&lat=37.351l&user id=l&long=-119.827&waffle=eggo

= Change to different type of waffle

waffle=liege

order.com/count=10&lat=37.351l&user id=1&long=-
119.827&waffle=eggo\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x02\x28&waffle=liege

Attack Example (URL)
Source: https://en.wikipedia.org/wiki/Length_extension_attack V

Y/
1P msg 1P pad - 3P msg 3P pad %

order.com/count=10&lat=37.351l&user id=l&long=-119.827&waffle=eggo

Change to different type of waffle
waffle=liege

order.com/count=10&lat=37.35l&user id=l&long=-
119.827&waffle=eggo\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x02\x28s&waffle=liege

Attack Example (URL)
Source: https://en.wikipedia.org/wiki/Length_extension_attack V

1P msg

1P pad - 3P msg 3P pad %

order.com/count=10&lat=37.351l&user id=l&long=-119.827&waffle=eggo

= Change to different type of waffle

waffle=liege

order.com/count=10&lat=37.35l&user id=l&long=-
119.827&waffle=eggo\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x02\x28swaffle=1liege

Attack Example (URL)
Source: https://en.wikipedia.org/wiki/Length_extension_attack V

1P msg

1P pad - 3P msg 3P pad %

order.com/count=10&lat=37.351l&user id=l&long=-119.827&waffle=eggo

= Change to different type of waffle

waffle=liege

order.com/count=10&lat=37.35l&user id=l&long=-
119.827&waffle=eggo\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x02\x28&waffle=1liege

/g

N~ 4

Use SHA256 w/ secret as MAC?

= Easy to compute and verify for Alice & Bob
= Doesn’'t grow with message length
—Hard-fernot-Alice/~Bob-tocreate—

What's 1+17?

¢ 1,384,353, 2, SHA256(s || 2)
SHA256(s || 1,384,353) N

| can kinda do that.

/g

\ 4

HMAC(s, x) =y
Function [HMAC]
= “Hash-Based Message Authentication Code”
= Specific usage of hash functions
Secret [s]
= |Is only known to 1P actors
Input [Xx]
= Arbitrary length data
Output [y]

= Fixed-length “digest”

Turning a Hash into an HMAC ,AT
urning | G

Any hash function can be turned into an
HMAC using a simple construction

HMAC(K,m) = H ((K’ & opad) || H ((K' @ ipad) || m))

K — H(K) K islarger than block size
| K otherwise

*opad and ipad are block-sized constants

HMAC-SHA256 == HMAC using SHA-256

/g

N~ 4

Use HMAC-SHA256 as MAC?

= Easy to compute and verify for Alice & Bob
= Doesn’t grow with message length
= Hard for not-Alice/-Bob to create

What's 1+17?

2, HMAC-SHA256(s, 2)

N

%R @#!

Building a Secure Channel T@A{

N~ 4

. Confidentiality
‘ Message Integrity

What's 1+17?

2, HMAC-SHA256(s, 2)

Building a Secure Channel T@A{

N~ 4

'@ Confidentiality
'@ i Message Integrity
' @ Sender Authenticity ????

What's 1+17?

2, HMAC-SHA256(s, 2)

roperties of Secure Channel TENT
roper 1eS O ecure anne E

A secure channel is a mechanism that allows
Alice and Bob to communicate with the
properties of:

Confidentiality

- Messages can’t be read by a 3" party (3P)
Message Integrity

= Messages can’t be unknowingly modified by 3P
Sender Authenticity

= Valid messages creatable only by a 1P actor

Replay Attacks T@A{

N~ 4

In our simple construction, using a MAC
does not provide sender authenticity in the
general case.

What's 1+17?

2, HMAC-SHA256(s, 2)

N

Good to know

Replay Attacks AT

N~ 4

In our simple construction, using a MAC
does not provide sender authenticity in the
general case.

What's 5oo+5007?

>

(1000,

| ammacshaasss) | f T

Replay Attacks AT

N~ 4

In our simple construction, using a MAC
does not provide sender authenticity in the
general case.

What's 5oo+5007?

<

roperties of Secure Channel TENT
roper 1eS O ecure anne E

A secure channel is a mechanism that allows
Alice and Bob to communicate with the
properties of:

Confidentiality

- Messages can’t be read by a 3" party (3P)
Message Integrity

= Messages can’t be unknowingly modified by 3P
Sender Authenticity

= Valid messages creatable only by a 1P actor

Building a Secure Channel T@A{

N~ 4

'@ Confidentiality
'@ i Message Integrity
' @ Sender Authenticity

What's 1+17?

2, HMAC-SHA256(s, 2)

Computer and Network
SY-1dV] 14Y

Lecture 03:
Hashing and Integrity

Course Notes

= Project 1A is live and due in two weeks

Schedule (1st half)
(subject to change)
Week Day Event Desc. Docs
Security
1 Tu (20Aug2024) Lecture Mindset & slides
Overview
assn
We (21Aug2024) Release Project 1A Spee
M i ‘) makefile
EX

Typo Fixed in the Spec

Data-Type: num

A nosj num represents an integer value between positive-infinity and
negative-infinity. A marshalled num consists of the value's two's complement

representation (including the sign bit) in binary format as a sequence of ascii
II1IIS and "Q"S.

Examples:
Marshalled nosj num: 1010
Numerical value: -6

Marshalled nosj num: 11110110
Numerical value: -10

ERRATA:
26Aug2024 - Fixed typo in example: "6" —-—> "-6"

Project 1A

Input: (<abc:defs>)

Project 1A

Input: (<abc:defs>)

Data-Type: map

A nosj map is a sequence of zero or more key-value pairs that take the form of
"<key-1l:value-1,key-2:value-2,...>" similar to the conceptual hash-map data
structure. A nosj map MUST start with the two character "BEGIN" sequence ("(<")
and end with the two-character "END" sequence (">)"). Map keys MUST be an
ascii-string consisting of one or more lowercase ascii letters ("a" through "z"
/ 0x61 through 0x7a) only. Map values may be any of the three canonical nosj
data-types (map, string or num) and there is no specification-bound on how many
maps may be nested within each other. Though map values are not required to be
unique, map keys MUST be unique within the current map (though they may be
duplicated in maps at other levels of "nesting").

Examples:

Project 1A

Input: (<abc:defs>) Key: ‘‘abc”

Data-Type: map

A nosj map is a sequence of zero or more key-value pairs that take the form of
"<key-1l:value-1,key-2:value-2,...>" similar to the conceptual hash-map data
structure. A nosj map MUST start with the two character "BEGIN" sequence (" (<")
and end with the two-character "END" sequence (">)"). Map keys MUST be an
ascii-string consisting of one or more lowercase ascii letters ("a" through "z"
/ 0x61 through ©x7a) only. Map values may be any of the three canonical nosj
data-types (map, string or num) and there is no specification-bound on how many
maps may be nested within each other. Though map values are not required to be
unique, map keys MUST be unique within the current map (though they may be
duplicated in maps at other levels of "nesting").

Examples:

Project 1A

Input: (<abc:defs>) Key: “‘abc”

Data-Type: map

A nosj map is a sequence of zero or more key-value pairs that take the form of
"<key-1l:value-1,key-2:value-2,...>" similar to the conceptual hash-map data
structure. A nosj map MUST start with the two character "BEGIN" sequence ("(<")
and end with the two-character "END" sequence (">)"). Map keys MUST be an
ascii-string consisting of one or more lowercase ascii letters ("a" through "z"
/ 0x61 through @x7a) only./Map values may be any of the three canonical nosj
data—types (map, String or num) and there is no specification-bound on how many
maps may be nested within each other. Though map values are not required to be
unique, map keys MUST be unique within the current map (though they may be
duplicated in maps at other levels of "nesting").

Examples:

Project 1A

Input: (<abc:defs>) Key: “‘abc”

Data-Type: string

A nosj string is a sequence of ascii bytes which can be used to represent
arbitrary internal data such as ascii, unicode, or raw-binary. There are two
distinct representations of a nosj string data-type as described below.

Representation #1: Simple-Strings

In the simple representation, the string is|restricted to a set of

common ly-used ascii characters which (according to our extensive market survey)
are the most-[liked by humans (i.e. upper and lowercase ascii letters, ascii
digits, spaces (" " / 0x20), and tabs ("\t" / 0x09)). Simple-strings are
followed by a trailing "s" which is NOT part of the data being encoded.

Project 1A

Input: (<abc:defs>) Key: “‘abc”
Value: ‘‘def”’

Data-Type: string

A nosj string is a sequence of ascii bytes which can be used to represent
arbitrary internal data such as ascii, unicode, or raw-binary. There are two
distinct representations of a nosj string data-type as described below.

Representation #1: Simple-Strings

In the simple representation, the string is restricted to a set of
commonly-used ascii characters which (according to our extensive market survey)
are the most-liked by humans (i.e. upper and lowercase ascii letters, ascii
digits, spaces (" " / 0x20), and tabs ("\t" / 0x@09)). Simple-strings are
followed by a trailing "s" which is NOT part of the data being encoded.

Project 1A Pro-Tips

Don’t focus on what your code should be
doing, focus on what your code can be fed
Apply Software Engineering principles

= Unit-testing, isolated responsibilities, etc.

You can not patch/re-use a JSON parser
You can use built-in libraries in your code

READ THE SPEC AGAIN

Computer and Network
SY-1dV] 14Y

Lecture 03:
Hashing and Integrity

