# Computer and Network Security

#### Lecture 05: Confidentiality

COMP-5370/6370 Fall 2024





#### **WARNING**



## I AM NOT A CRYPTOGRAPHER

## YOU ARE NOT A CRYPTOGRAPHER



#### **Properties of Secure Channel**



A **secure channel** is a mechanism that allows Alice and Bob to communicate with the properties of:

- Confidentiality
  - Messages can't be read by a 3<sup>rd</sup> party (3P)
- Message Integrity
  - Messages can't be unknowingly modified by 3P
- Sender Authenticity
  - Valid messages creatable only by a 1P actor

#### **One-Time Pad**



One-Time Pad is the only cryptosystem known to be unbreakable even infinite computational resources.



- -ct[i] = pt[i] XOR key[i]
- Extremely fast to encrypt and decrypt
- Extremely easy to implement safely

#### N-Time Pad Leaks Information





#### **Stream Cipher**





- Shared key known by all participants
- Key is "expanded" to the length of the message
  - PRNG

Infinite-Length
One-Time Pad

#### **RC4 Stream Cipher**



- Was widely used for speed and simplicity
- Should not be used

```
i := 0
j := 0
while GeneratingOutput:
    i := (i + 1) mod 256
    j := (j + S[i]) mod 256
    swap values of S[i] and S[j]
    K := S[(S[i] + S[j]) mod 256]
```



#### **Block Cipher**





- Fixed-size input
- Fixed-size output
- Substitutions from secret internal state
  - "S-Boxes"
- Multiple "rounds" to increase substitutions

## DES – Data Encryption Standard



- 1977 Standardized by NIST
  - NSA heavily involved in design
- 64-bit block cipher using 56-bit key
- Often implemented in hardware due to unneeded added complexity
- 1990 Differential cryptanalysis discovered
  - General technique against block ciphers
- 1998 EFF DES Cracker operational
  - Brute-force attack on key

# DES – Data Encryption Standard



# Never ever, ever, ever, ever use single-DES

#### 3DES – Triple DES



- 1995 A "hot patch" for DES via RFC
- Exact same algorithm w/ different key-sched
  - Encrypt → decrypt → encrypt
- Best-case construction is 168-bit key
- Vulnerable to "meet-in-the-middle" attacks
  - Brute-force: 2<sup>56</sup> space + 2<sup>112</sup> operations
- 2016 Practical collision attack (Sweet32)
  - DES is 64-bit block cipher (2<sup>36.6</sup> blocks needed)
  - "Got lucky" w/ 2<sup>20</sup> block in 25 minutes vs. TLS

#### 3DES – Triple DES



## 3DES is a weak cipher and should be immediately deprecated.

#### AES – Advanced Encryption Std



- 2001 Standardized by NIST
- 128-bit block size
- 128/192/256-bit keys
  - Bigger key → same algorithm + more rounds
- Invertible S-boxes
  - Same used for both Encrypt() and Decrypt()
- AES-256 approved for CNSA
  - "Commercial National Security Algorithm Suite"
  - Encrypt TOP SECRET information and broadcast

#### **Building a Secure Channel**







#### **Key Derivation Function (KDF)**



A **Key Derivation Function (KDF)** is one which can *safely* turn one shared-secret into multiple shared-secrets deterministically.

HKDF is commonly used for protocols

#### **Building a Secure Channel**







#### Problem 1



Re-using key material for different algorithms can reveal information about the key material's value.



#### **Building a Secure Channel**





#### **Confidentiality** Message Integrity **Sender Authenticity**



#### Cipher Mode



A **cipher mode** is a way to use a fixed-size block cipher with arbitrary-sized data.

- Needed for block-ciphers due to small cipher-width (AES256 == 256 bit blocks)
- Choice can heavily impact the performance of the cryptosystem

#### Electronic Codebook Mode (ECB)



- Pad last block to correct length
- Each block of plaintext fed through cipher independently of all others
- Embarrassingly parallel, random access



Electronic Codebook (ECB) mode encryption

#### Problem 2



Block ciphers are fixed-length inputs/outputs and messages are ... not.



#### Cipher Mode



A **cipher mode** is a way to use a fixed-size block cipher with arbitrary-sized data.

- Needed due to small/fixed cipher-width (AES256 == 256 bit blocks)
- Choice can heavily impact the performance of the cryptosystem

#### Electronic Codebook Mode (ECB)



- Pad last block to correct length
- Each block of plaintext fed through cipher independently of all others
- Embarrassingly parallel, random access



Electronic Codebook (ECB) mode encryption

#### Electronic Codebook Mode (ECB)



Since the only inputs to the cipher are the plaintext and the key material, identical PT blocks encrypt to identical CT blocks.

AAABBBAAA → UVWXYZUVW

AAA -> UVW

BBB → XYZ

AAA 

UVW

# Electronic Codebook Mode (ECB)







#### Initialization Vector



An Initialization Vector (IV) is an additional, non-secret input provided to the cipher to remove identical CT leaking data about PT.

- Must be known to Alice and Bob but is not required to be secret
- Often called a "nonce"

$$n_{once} \rightarrow nonce$$

### Cipher Block Chaining (CBC)



- IV is the previous block's CT
- Pad last block in a deterministic way
  - AES-128 24-byte message = 8x 0x08 padding
  - AES-128 30-byte message = 2x 0x02 padding



Cipher Block Chaining (CBC) mode encryption

#### **CBC Padding Oracle**



CBC mode usually vulnerable to **padding** oracle attacks due to the difficulty of handling the padded block.

- Extremely easy to leak internal cipher state
- Writing safe software is hard
- Writing safe security-related software is really, really hard
- Writing safe crypto-software is one of the reasons we don't roll our own crypto

#### **CBC Padding Oracle**





#### Counter Mode (CTR)



- Key-unique nonce || counter to avoid ECB mode inter-block leakage
- No padding because used as stream cipher
  - CT = Encrypt(key, IV) XOR PT



Counter (CTR) mode encryption

#### Counter Mode (CTR)



Key-unique nonce || counter to avoid ECB



#### **Building a Secure Channel**





#### **Confidentiality** Message Integrity Sender Authenticity



What's 1+1?

AES256\_CTR(s', nonce, 2), nonce, HMAC-SHA256(s", 2)



#### **Building a Secure Channel**





#### **Confidentiality** Message Integrity **Sender Authenticity**



## Cryptographic Doom Principle



If you have to perform **any** cryptographic operation before verifying the MAC on a message you've received, it will **somehow** inevitably lead to doom.

-Moxie Marlinspike

#### **Building a Secure Channel**





#### **Confidentiality** Message Integrity Sender Authenticity





#### **Building a Secure Channel**





#### **Confidentiality** Message Integrity **Sender Authenticity**



## **Building a Secure Channel**





#### **Confidentiality** Message Integrity Sender Authenticity



#### **AEAD Cipher Modes**



Authenticated Encryption with Associated Data (AEAD) cipher modes provide confidentiality and message integrity simultaneously.

- Provides confidentiality
- Provides message integrity
- Does not provide sender authenticity
- Commonly use seal() and unseal() instead of encrypt() and decrypt()

#### The "AD" in AEAD



AEAD cipher modes allow some data (the "Associated Data") to be authenticated but not encrypted.

- CT  $\leftarrow$  Seal(key, nonce, PT, AD)
- To recover & validated PT, must have CT, key, nonce, and AD

# Galois/Counter Mode (GCM)



CTR mode with built-in integrity checking

- Key-unique IV
- Makes protocols much easier to implement



# Galois/Counter Mode (GCM)





#### **AES-GCM-SIV**



- Nonce misuse-resistant version of GCM
- Still provides confidentiality and message integrity in single abstraction
- Low-/Early-adoption (very recent)

#### **AES-GCM-SIV: Specification and Analysis**

Shay Gueron<sup>1</sup>, Adam Langley<sup>2</sup>, and Yehuda Lindell<sup>3</sup>\*

University of Haifa, Israel and Amazon Web Services
 Google, Inc.
 Bar-Ilan University, Israel

December 14, 2018

Abstract. In this paper, we describe and analyze the security of the AES-GCM-SIV mode of operation, as defined in the CFRG specification [10]. This mode differs from the original GCM-SIV mode that was designed in [11] in two main aspects. First, the CTR encryption uses a 127-bit pseudo-random counter instead of a 95-bit pseudo-random value concatenated with a 32-bit counter. This construction leads to improved security bounds when encrypting short messages. In addition, a new key derivation function is used for deriving a fresh set of keys for each nonce. This addition allows for encrypting up to 2<sup>50</sup> messages with the same key, compared to the significant limitation of only 2<sup>32</sup> messages that were allowed with GCM-SIV (which inherited this same limit from AES-GCM). As a result, the new construction is well suited for real world applications that need a nonce-misuse resistant Authenticated Encryption scheme. We explain the limitations of GCM-SIV, which motivate the new construction, prove the security properties of AES-GCM-SIV, and show how these properties support real usages. Implementations are publicly available in [8]. We remark that AES-GCM-SIV is already integrated into Google's BoringSSL library [1] and is deployed for ticket encryption in QUIC [17].

### **Building a Secure Channel**







# Computer and Network Security

#### Lecture o5: KEX & Asymmetric Operations

COMP-5370/6370 Fall 2024



#### **Key Distribution Problem**



**Key Distribution Problem** is the generic name used to reference real-world challenges from a nominally simple need.

## **Building a Secure Channel**





#### **Confidentiality** Message Integrity **Sender Authenticity**



#### Symmetric Keys



A **symmetric key** is key that is identical for all parties involved.

#### **EXAMPLE**:

- AES cipher key
- HMAC key
- Any "shared secret"











- Ad hoc independent
  - People are bad at predicting and planning





- Ad hoc independent
  - People are bad at predicting and planning
- Transitive trust
  - Who do you trust?





- Ad hoc independent
  - People are bad at predicting and planning
- Transitive trust
  - Who do you trust?
- Centralized issuance
  - Single point of trust
  - Single point of failure

#### Symmetric Keys



A **symmetric key** is key that is identical for all parties involved.

#### **EXAMPLE:**

- AES cipher key
- HMAC key
- Any "shared secret"







#### Military Spending: World, US, and Other Major Countries

**Data Driven** 





knoema ⊚⊕ ⊜



Source: Stockholm International Peace Research Institute











#### AN/CYZ-10





The AN/CYZ-10 is the full keyboard version and the AN/CYZ-10A is the limited keyboard version of the DTD.









#### **Key Distribution Problem**



**Key Distribution Problem** is the generic name used to reference real-world challenges to values being shared by the actors manually or *out of band*.

- Is well-known and widely maligned
- Directly applicable to shared secrets
- Also applicable to non-secret provenance

## Security Analysis Revisited



- Attackers should be fundamentally limited in what they can-do not what they should-do
  - Things that are "computationally infeasible" or "fundamental unknown"



# Public Key Cryptography



Public key cryptography is a family of cryptosystems that leverage key pairs to perform asymmetric cryptographic operations.

### Public Key Cryptography



Public key cryptography is a family of cryptosystems that leverage key pairs to perform asymmetric cryptographic operations.

Not a single shared secret between all parties

Public key & Private key

- Public key == pub-key == pk
- Private key == priv-key == sk ("secret key")

#### **Trapdoor Function**



A trapdoor function is one which can convert between two states but:

- Is computationally easy D → R
- Is computationally hard D ← R
- Is computationally easy D ← R given a secret



# Computer and Network Security

#### Lecture o5: KEX & Asymmetric Operations

COMP-5370/6370 Fall 2024

