Computer and Network
SY-1dV] 14Y

Lecture o07:
Sender Authenticity

WARNING WARNING TEA-T

-

| AM NOT A YOU ARE NOT A
CRYPTOGRAPHER CRYPTOGRAPHER

THE FIRST RULE OF CRYPTO
THESECOND RULE OF CRYPTO
.. THE THIRD RULE OF CRYPTO

- - ‘{ |
isyouns _ '
IS DONTROLI

A

-t
“|S'YOU'DON'T ROLLYOUR'OWN
cnvPTﬂ eeeeeeeeeeeeeee .net

THE FIRST RULE OF CRYPTO THE SEI}.QHII RULEOF.CRYPTO THETHIRD RULE OF CRYPTO

>
: <@ : >
!f T : . e 3;“ 2

o | ‘{ 1\

IS'YOU'DON'T ROLLYOUR'OWN
IS YOU DON'TROLL YOUR OWN CRYPTO 1S DON'T ROLL YOUR OWN CRYPTO CRYPTO,.......0. e

4™ Rule: Don'’t roll your own crypto
5th Rule: Don’t roll your own crypto
6" Rule: Don’t roll your own crypto
7t Rule: Don’t roll your own crypto

Public Key Cryptography ?Aﬁ;..‘

\ 4

Public key cryptography is a family of
cryptosystems that leverage key pairs to
perform asymmetric cryptographic

operations.
Not a single Public key
shared secret &
between Private key
all parties

Public key == pub-key == pk
Private key == priv-key == sk (“secret key”)

Using PubKey Crypto

= Key Exchange

= Create a shared secret in the presence of a
passive attacker (Eve)

Diffie-Hellman Key Exchange’A‘

1976 — Whit Diffie &
Martin Hellman

= New Directions in
Cryptography

Modular Exponentiation
w/ Prime Modulus

= If you multiply a value by
itself enough times over a
prime-order finite field ...
you can'’t figure out how
many times you multiplied

y g

AES256_GCM(KDF(g®¢, cipher), KDF(g*?, nonce,), What's 1+1?)
>

AES(256_GCM(KDF(g®¢, cipher), KDF(g*?, nonce,), What's 1+1?, 2)

Building a Secure Channel T@A{

N~ 4

'@ | Confidentiality
'@ i Message Integrity
' @ Sender Authenticity

What's 1+17?

AES256_GCM(s’, nonce”, 2)

Using PubKey Crypto

Key Exchange

= Create a shared secret in the presence of a
passive attacker (Eve)

Encryption/Decryption

= Encrypt w/ public key, decrypt w/ private key

= Allows anyone to send information securely as
long as have public key

PubKey Encrypt/Decrypt AT

\ 4

= Encrypt with the public key
= Decrypt with the private key

Encrypt(PK, msqg)

SK PK

PubKey Encrypt/Decrypt

Encrypt with the public key
Decrypt with the private key
Many-to-1 encryption

PK

PK
SK PK

PK

Digital Signature ?Aﬁ;..‘

N~ 4

A digital signature is a cryptographic value
that allows anyone to verify data’'s source.

Create a signature (sig) with private key
Validate sig with public key

Signature schemes hash a the message
as part of the operation

1978 — Ron Rivest,
Adi Shamir, &
Leonard Adleman

Modular Exponentiation
w/ non-prime modulus

= If you multiply a value
by itself enough times
over a finite field ... it
eventually returns to its
original value.

1973 — Clifford Cocks
= GCHQ cryptographer
= Classified until 1997

Modular Exponentiation
w/ non-prime modulus

= If you multiply a value
by itself enough times
over a finite field ... it
eventually becomes a
cycle and returns to its
original value

RSA Key Generation

Generate two large primes p and q

= pandq
Calculate modulus n from p and q
“n=p*q (|n] is the RSA “length”)

Select relatively prime public exponent e

= Usually 3 or 65,537

Find a private exponent d

= (e *d) mod lcm((p-1) * (q-1)) = 1
Priv-Key = (d, n)

Pub-Key = (e, n)

/g

N~ 4

If you multiply a value by itself enough times
over a finite field ... it eventually becomes a
cycle and returns to its original value.

Encrypt with the public key (e, n)
= CT = PT® mod n

Decrypt with the private key (d, n)
= PT = CT9 mod n

/g

N~ 4

If you multiply a value by itself enough times
over a finite field ... it eventually becomes a
cycle and returns to its original value.

Sign with the private key (d, n)
= sig = (hash(data))9 mod n

Verify with the public key (e, n)

* 51g® mod n =7?7= hash (data)

Security of RSA

RSA's security is based on the assumed
hardness of two mathematical problems:

Integer Factorization RSA Problem
Problem
Given only the pub-key, it
Given nitis hard to Is hard to perform a
recover p and g priv-key operation

Safe RSA Parameters

= Correctly generated 2048-bit modulus
= Thought to be safe
= Widely used in the real-world

= Correctly generated 3072-bit modulus
= Thought to be safe

= Relatively rare in the real-world
= CNSA approved

Canonical RSA Vulnerabilities A‘l
N\~ /4

Brute-force computation overmatch
= Can factor 512-bit n on EC2 for ~$75

= Assumed $100M of ASICs for 1024b modulus
Poor randomness when selecting p and q

Insecure strategy for generating p and g
= Vulnerable example: p = prime, , g = prime,,,
Algorithmic advances

= Pre-Quantum: Number Field Sieve (NFS)

= Post-Quantum: Shor’s algorithm

Using PubKey Crypto

Key Exchange

= Create a shared secret in the presence of a
passive attacker (Eve)

Encryption/Decryption
= Encrypt w/ public key, decrypt w/ private key

= Allows anyone to send information securely as
long as have public key

Digital Signatures
= Sign w/ private key, verify w/ public key
= Allows anyone to receive data w/ known-origin

Debating Rolling Own Crypto? ?Aﬁ;..‘

RSA CIPHERTEXT IS MALLEABLE

CTnew = CTl*CTZ mod n
PTnew = (CTnew) © mod Tl
CTnew = kncrypt (PTl * P T

N~ 4

re: s W@
)
» <
ey

There are many, many more AT

LTHAT'S WHY YOUDONT &
ROLL YOUR OWNCRYPTIO

Building a Secure Channel T@A{

N~ 4

'@ Confidentiality
@ Message Integrity
@ : Sender Authenticity

ga

y g

What's 1+17?
>

(AESz56_GCM(KDF(g®, cipher), KDF(g®, nonce), 2), sigcr

Building a Secure Channel ?Aﬁ;..‘

N~ 4

Security Analysis

In order to use cryptography safely, you
have to account for that the use-case is.

As an Attacker:

-

« What is the easiest way to gain access?

= What is assumed about the system?

= What did defender not think about?

Security Analysis A‘l

N~ 4

What assumptions have we
(the designers) made in order to
build our Secure Channel?

An insecure channel exists/can be leveraged
There are two actors involved (Alice/Bob)
Alice and Bob’s interaction is “online”

Alice and Bob have each others’ pub-keys
All our crypto primitives are safe to use

Security Analysis

In order to build technology in a helpful
way, you have to plan for deployment/usage.

Kerckhoffs’s Principles

(Adapted)

Interoperate with existing
infrastructures, topologies, and
protocols at higher and lower levels

Layer
Application

Ideally, system should be | ": —_—
100% transparent to R
existing infrastructure | e S
Systems that are hard to ... s
deploy usually don’t g —

get deployed T e

Security Analysis

Alice & Bob have a secure channel to talk.

Is this channel useable in the real-world?
ga
)

y g

What's 1+17?
>

(AESz56_GCM(KDF(g?, cipher), KDF(g?%, nonce), 2), sigcr

Security Analysis

Relatively poor performance

= High per-message computation and bandwidth
No backwards compatibility

= Very difficult to update or interoperate

No protocol flexibility

= Everything (cipher, hash, etc primitive) is fixed
Frequent use of long-term keys

But What About ...

What if Alice only wants to talk to herself?

= EX: Encrypting backup

What if Alice only cares about Sender
Authenticity + Integrity?

= EX: "Bob said XXXX and everyone should know”

What if Alice only cares about provenance
of static data?

= EX: Peer-to-Peer file sharing

Computer and Network
SY-1dV] 14Y

Lecture o07:
Sender Authenticity

Project 1-A

We have to be able
to build your code.

3. You must have a Makefile in the root directory with two targets:

build — Must compile your code from scratch and exit successfully. If a non-compiled language
(e.g., Python), this target is not required to do anything (i.e. “exit 07).

Project 1-A

We have to be able
to build your code.

3. You must have a Makefile in the root directory with two targets:

build — Must compile your code from scratch and exit successfully. If a non-compiled language
(e.g., Python), this target is not required to do anything (i.e. “exit 07).

We have to be able
to build your code.

run — Must pass the FILE argument to make to the above compiled program and transparently
pass stdout and stderr.

Regrade Requests

= Regrade requests come in 2 forms:
= Fix things that break the auto-grader
= Fix minor things that cause major deduction

Project 1-A

Target run when the shell command "make build™ 1s run.
There is nothing to build for Python so simply exit successfully.
build:

@exit 0

Target run when the shell command "make run FILE=XXXX" 1s run.
The input file path 1is passed as the XXXX portion of the argument to make
and 1s relayed to the Python script as it's first and only command line
argument.
run:
@python3 example.py $(FILE)

This is important!

Auto-Grader Errors

Removed the “@" in Makefile and have extra
line of output to stdout?
= You can add an “@" sign.
Submission structure wrong?
= You can move your files around
Makefile isn't a makefile?
= You can fix your Makefile
Etc.
YOU DON’T GET AN EXTRA WEEK
TO FINISH IMPLEMENTING

Fundamental 7 AN
AT

Misunderstandings —

Print to the wrong handle (stdout vs. stderr)?
= You can change to the correct handle

Pr|nt W——-— simple-string —--- 7 and nOt “W-—-- string ———”?
= You can change your print statement’s literal

Etc

YOU DON’T GET AN EXTRA WEEK
TO FINISH IMPLEMENTING

Let’s do some Math

Grading
* 3x Course Projects (each) — 10%

* Final Exam — 25%
* 2x In-Class Exams (each) — 12.5%
* Midterm Exam — 20%

Calculating Your Course Grade With your returned scores as a percentile value (i.e. 0% — 100%), fill-in
the below formula:

0.10x project; +0.10 X pro ject +0.10 X pro jectz +0.125 x exam + 0.125 x exam; +0.20 X midterm+0.25 X final

= A zero (0) on Project 1A means that you
have a max final grade of 95% (A)

Regrade Requests

Regrade requests come in 2 forms:
= Fix things that break the auto-grader
= Fix minor things that cause major deduction

Each rejection costs you points

The “clock” does not restart every time
you send us a new version.

Project 1-B

= Released Friday
= Due next Friday, 20Sept2024

Project 1B

Computer and Network Security Released: 06Sept2024
COMP-5370/-6370 Due: 20Sept2024 at 6pm CT

Part B of this project is due Friday, 20Sept2024 at 6pm CT and must be submitted through the Canvas
assignment (if early/on-time) or by emailing the TA (if late). Late assignments will be penalized as described
in the syllabus.

Project 1-B --- Part 1

Trade implementations with a partner and
find/demonstrate incorrect behavior

= Must have different root-causes
1 Break-It

This portion of the project must be completed with a single partner.

For this portion, you should select a partner within the course, exchange implementations, and use your
in-depth knowledge of nosj from Project 1A to find corner-cases which demonstrate incorrect behavior in
your partner’s implementation. This may be by error-ing when given valid input, not error-ing when given
invalid input, or by incorrectly handling valid input (i.e. the output is wrong). Your goal is to find three (3)
different incorrect behaviors with different root-causes. It is important to note that three different examples
with the same root-cause (i.e. triggering it with just different input) will be counted as only one (1). You may
not submit any of the testcases from the specification as your testcases for incorrect behavior.

In your submission, you should provide input/output files for each erroneous behavior as well as a short,
less than 100 words, ascii-only description/explanation identifying A) the root-cause and B) a sufficient

avnlanation of bosy vosie martnor’c sanlomantation conld bho natobod t0 sitiaato tha 1ccio Vou dao nat

Project 1-B --- Part 1

You may only have 1 Partner

= Your 1A implementation must be used by only
one person for 1B

If you can’t find a partner by this Friday,
let us know and we’ll work it out

YOU SHOULD NOT BE WAITING ON
YOUR PARTNER’S IMPLEMENTATION

Project 1-B --- Part 2

Generate a partial SHA256 hash collision
via brute-force attack

2 Brute-Force Attacks
This portion of the project must be completed individually.

Though brute-force attacks are rarely the best or most-efficient attack, they are always an attack that is
possible and guaranteed to be successful given sufficient resources. In this portion of the project, you will
demonstrate this by implementing a reduced-strength, partial collision attack against a cryptographic hash
function (SHA256). You are not required to generate a complete collision.

You should be cognizant of the fact that there is often a “point of diminishing returns™ where it is more
efficient to intentionally perform a non-optimized/inefficient attack rather than continue to optimize the
attack/implementation/etc. If it takes 3 hours to optimize code that will reduce the run-time by 3 seconds,
you have passed that point (hint... HINT).

Project 1-B --- Part 2

= Generate a Oar tial sHA256 hash
collision via brute-force attack

2 Brute-Force Attacks
This portion of the project must be completed individually.

Though brute-force attacks are rarely the best or most-efficient attack, they are always an attack that is
possible and guaranteed to be successful given sufficient resources. In this portion of the project, you will
demonstrate this by implementing a reduced-strength, partial collision attack against a cryptographic hash
function (SHA256). You are not required to generate a complete collision.

You should be cognizant of the fact that there is often a “point of diminishing returns™ where it is more
efficient to intentionally perform a non-optimized/inefficient attack rather than continue to optimize the
attack/implementation/etc. If it takes 3 hours to optimize code that will reduce the run-time by 3 seconds,
you have passed that point (hint... HINT).

Project 1-B --- Part 2

Generate a partial SHA256 hash collision
via brute-force attack
Input requirements: prefix w/ AU email

= abcl234Q@auburn.edull{anything you want}

2 DIFFERENT inputs must collide
Partial collision requirements:

= Leading 4-bytes are of the digest are identical
= Both digests leading 4 bytes are identical

Project 1-B --- Part 2

Generate a partial SHA256 hash collision
via brute-force attack
Input requirements: prefix w/ AU email

= abcl234Q@auburn.edull{anything you want}

2 DIFFERENT inputs must collide
Partial collision requirements:

= Leading 4-bytes are of the digest are identical
= Both digests leading 4 bytes are identical

HEX ENCODING IS 2 CHARACTERS PER BYTE

Project 1-B --- Part 2

GOOD EXAMPLE:
= Digest 1: OXAAAAAAAAO4FDEAB...

= Digest 2: OXAAAAAAAA9FDABCS...
BAD EXAMPLE 1:

= Digest 1: 0OXAABBCCDDO4FDEAB...

= Digest 2: 0OXAABBCCDD9FDABCS...
BAD EXAMPLE 2:

= Digest 1: OXAAAAAAAAO4FDEAB...
= Digest 2: 0XBBBBBBBBFDABCS3...

Project 1-B --- Part 2

PLEASE READ THE ASSIGNMENT
CAREFULLY TO AVOID ISSUES

Kk &k ke Kk ok ok ok &k ok ok k& ok ok ok ok ko ok ko ok ok ko ok ok ke ok ok ok ok ok ok kK ok ok ok K
WARNING
%k ok ke ok ko ko ke ke ke ke ke ke ke ke ke ke ko ke ke ok ke k ok ok ke ke k ok k ok ki k ok ke ok ok ok ki k ok ok ok ok ok ok
Depending on your implementation, it may take many hours for your attack to be successful. A
non-optimized, single-thread, well-implemented implementation can probabilistically finish using standard,
commodity hardware in a short amount of time (order hours) even if using Python. It is highly recommended
that you validate your implementation’s logic with a further-reduced set of restrictions™ prior to attempting
to generate the partial collision you will submit. This will ensure that your implementation operates as you
expect and you do not encounter errors such as:

* Your implementation runs but crashes before finding a solution.
* Your implementation does not find a solution even though guaranteed to be possible.
* Your implementation continues searching after finding a solution.

* Your implementation does not output the found solution.

Project 1-B --- Part 2

PLEASE READ THE ASSIGNMENT
CAREFULLY TO AVOID ISSUES

7. By default, code will be ran on an up-to-date version of Ubuntu 24.04 (amd64) without GUI function-
ality. If you believe your code must be compiled/ran on a different OS or ISA for any reason, you must
contact the instructor prior to submission and obtain such approval in-writing.

Project 1-B --- Part 2

PLEASE READ THE ASSIGNMENT
CAREFULLY TO AVOID ISSUES

run — Must execute your partial-collision implementation and output the newly generated partial
collision inputs as two BASE64 encoded lines to stdout as described above. Your implementation
must not overwrite the 1-input.txt or 2-input.txt files submitted.

Exam 1 on Tuesday

During class time, on paper, bring a pen

Multiple choice, True/False, Matching, etc.
Short-answers must be short

= Will have an anticipated length to give you
idea of how short your answers should be

Bonus available but low point value

Computer and Network
SY-1dV] 14Y

Lecture o07:
Sender Authenticity

