Computer and Network
SY-1dV] 14Y

Lecture 08:
Authentication

Project 1-A

We have to be able
to build your code.

3. You must have a Makefile in the root directory with two targets:

build — Must compile your code from scratch and exit successfully. If a non-compiled language
(e.g., Python), this target is not required to do anything (i.e. “exit 07).

We have to be able
to build your code.

run — Must pass the FILE argument to make to the above compiled program and transparently
pass stdout and stderr.

Regrade Requests

= Regrade requests come in 2 forms:
= Fix things that break the auto-grader
= Fix minor things that cause major deduction

Auto-Grader Errors

Removed the “@" in Makefile and have extra
line of output to stdout?
= You can add an “@" sign.
Submission structure wrong?
= You can move your files around
Makefile isn't a makefile?
= You can fix your Makefile
Etc.
YOU DON’T GET AN EXTRA WEEK
TO FINISH IMPLEMENTING

Fundamental 7 AN
AT

Misunderstandings —

Print to the wrong handle (stdout vs. stderr)?
= You can change to the correct handle

Pr|nt W——-— simple-string —--- 7 and nOt “W-—-- string ———”?
= You can change your print statement’s literal

Etc

YOU DON’T GET AN EXTRA WEEK
TO FINISH IMPLEMENTING

Grade Math is just Math

Grading
* 3x Course Projects (each) — 10%

* Final Exam — 25%
* 2x In-Class Exams (each) — 12.5%
* Midterm Exam — 20%

Calculating Your Course Grade With your returned scores as a percentile value (i.e. 0% — 100%), fill-in
the below formula:

0.10x project; +0.10 X pro ject +0.10 X pro jectz +0.125 x exam + 0.125 x exam; +0.20 X midterm+0.25 X final

= A zero (0) on Project 1A means that you
have a max final grade of 95% (A)

Project 1-B

= Released Friday
= Due next Friday, 20Sept2024

Project 1B

Computer and Network Security Released: 06Sept2024
COMP-5370/-6370 Due: 20Sept2024 at 6pm CT

Part B of this project is due Friday, 20Sept2024 at 6pm CT and must be submitted through the Canvas
assignment (if early/on-time) or by emailing the TA (if late). Late assignments will be penalized as described
in the syllabus.

Project 1-B --- Part 1

Trade implementations with a partner and
find/demonstrate incorrect behavior

= Must have different root-causes
1 Break-It

This portion of the project must be completed with a single partner.

For this portion, you should select a partner within the course, exchange implementations, and use your
in-depth knowledge of nosj from Project 1A to find corner-cases which demonstrate incorrect behavior in
your partner’s implementation. This may be by error-ing when given valid input, not error-ing when given
invalid input, or by incorrectly handling valid input (i.e. the output is wrong). Your goal is to find three (3)
different incorrect behaviors with different root-causes. It is important to note that three different examples
with the same root-cause (i.e. triggering it with just different input) will be counted as only one (1). You may
not submit any of the testcases from the specification as your testcases for incorrect behavior.

In your submission, you should provide input/output files for each erroneous behavior as well as a short,
less than 100 words, ascii-only description/explanation identifying A) the root-cause and B) a sufficient

avnlanation of bosy vosie martnor’c sanlomantation conld bho natobod t0 sitiaato tha 1ccio Vou dao nat

Project 1-B --- Part 1

You may only have 1 Partner

= Your 1A implementation must be used by only
one person for 1B

If you can’t find a partner by this Friday, let
us know and we’ll work it out

= |f we don’t hear from you, assume have partner

YOU SHOULD NOT BE WAITING ON YOUR
PARTNER’S IMPLEMENTATION

Project 1-B --- Part 2

Generate a partial SHA256 hash collision
via brute-force attack

2 Brute-Force Attacks
This portion of the project must be completed individually.

Though brute-force attacks are rarely the best or most-efficient attack, they are always an attack that is
possible and guaranteed to be successful given sufficient resources. In this portion of the project, you will
demonstrate this by implementing a reduced-strength, partial collision attack against a cryptographic hash
function (SHA256). You are not required to generate a complete collision.

You should be cognizant of the fact that there is often a “point of diminishing returns™ where it is more
efficient to intentionally perform a non-optimized/inefficient attack rather than continue to optimize the
attack/implementation/etc. If it takes 3 hours to optimize code that will reduce the run-time by 3 seconds,
you have passed that point (hint... HINT).

Project 1-B --- Part 2

= Generate a Oar tial sHA256 hash
collision via brute-force attack

2 Brute-Force Attacks
This portion of the project must be completed individually.

Though brute-force attacks are rarely the best or most-efficient attack, they are always an attack that is
possible and guaranteed to be successful given sufficient resources. In this portion of the project, you will
demonstrate this by implementing a reduced-strength, partial collision attack against a cryptographic hash
function (SHA256). You are not required to generate a complete collision.

You should be cognizant of the fact that there is often a “point of diminishing returns™ where it is more
efficient to intentionally perform a non-optimized/inefficient attack rather than continue to optimize the
attack/implementation/etc. If it takes 3 hours to optimize code that will reduce the run-time by 3 seconds,
you have passed that point (hint... HINT).

Project 1-B --- Part 2

Generate a partial SHA256 hash collision
via brute-force attack
Input requirements: prefix w/ AU email

= abcl234Q@auburn.edull{anything you want}

2 DIFFERENT inputs must collide
Partial collision requirements:

= Leading 4-bytes are of the digest are identical
= Both digests leading 4 bytes are identical

Project 1-B --- Part 2

Generate a partial SHA256 hash collision
via brute-force attack
Input requirements: prefix w/ AU email

= abcl234Q@auburn.edull{anything you want}

2 DIFFERENT inputs must collide
Partial collision requirements:

= Leading 4-bytes are of the digest are identical
= Both digests leading 4 bytes are identical

HEX ENCODING IS 2 CHARACTERS PER BYTE

Project 1-B --- Part 2

GOOD EXAMPLE:
= Digest 1: OXAAAAAAAAO4FDEAB...

= Digest 2: OXAAAAAAAA9FDABCS...
BAD EXAMPLE 1:

= Digest 1: 0OXAABBCCDDO4FDEAB...

= Digest 2: 0OXAABBCCDD9FDABCS...
BAD EXAMPLE 2:

= Digest 1: OXAAAAAAAAO4FDEAB...
= Digest 2: 0XBBBBBBBBFDABCS3...

Project 1-B --- Part 2

PLEASE READ THE ASSIGNMENT
CAREFULLY TO AVOID ISSUES

Kk &k ke Kk ok ok ok &k ok ok k& ok ok ok ok ko ok ko ok ok ko ok ok ke ok ok ok ok ok ok kK ok ok ok K
WARNING
%k ok ke ok ko ko ke ke ke ke ke ke ke ke ke ke ko ke ke ok ke k ok ok ke ke k ok k ok ki k ok ke ok ok ok ki k ok ok ok ok ok ok
Depending on your implementation, it may take many hours for your attack to be successful. A
non-optimized, single-thread, well-implemented implementation can probabilistically finish using standard,
commodity hardware in a short amount of time (order hours) even if using Python. It is highly recommended
that you validate your implementation’s logic with a further-reduced set of restrictions™ prior to attempting
to generate the partial collision you will submit. This will ensure that your implementation operates as you
expect and you do not encounter errors such as:

* Your implementation runs but crashes before finding a solution.
* Your implementation does not find a solution even though guaranteed to be possible.
* Your implementation continues searching after finding a solution.

* Your implementation does not output the found solution.

Project 1-B --- Part 2

PLEASE READ THE ASSIGNMENT
CAREFULLY TO AVOID ISSUES

7. By default, code will be ran on an up-to-date version of Ubuntu 24.04 (amd64) without GUI function-
ality. If you believe your code must be compiled/ran on a different OS or ISA for any reason, you must
contact the instructor prior to submission and obtain such approval in-writing.

Project 1-B --- Part 2

PLEASE READ THE ASSIGNMENT
CAREFULLY TO AVOID ISSUES

run — Must execute your partial-collision implementation and output the newly generated partial
collision inputs as two BASE64 encoded lines to stdout as described above. Your implementation
must not overwrite the 1-input.txt or 2-input.txt files submitted.

Exam 1 on Tuesday

In-Person: During class, pen+paper
Distance: |dentify proctor and schedule

= Further details in the syllabus

Multiple choice, True/False, Matching, etc.
Short-answers must be short

= Will have an anticipated length to give you
idea of how short your answers should be

Bonus available but low point value

Computer and Network
SY-1dV] 14Y

Lecture 08:
Authentication

Authentication

Authentication is the act of confirming
whether or not an actor is who they claim to
be to determine subsequent actions.

Often used in relation to an identity

= Website authenticates user’s identity via
username and password

= Phone authenticates user’s identity via
fingerprint, facial features, or PIN/password

Password Authentication ,AT

Original and most
gy funus ubiquitous form of
S—— authentication
Enter password
i Relatively weak
e mechanism

| Signin

Many well-known and

This is an enterprise system used by Auburn
University to collaborate with both 1 d I I 't d
intraorganizational and external users. WI e y exp OI e
problems

A
Failure: Default/Static Passwor

Humans often see the existence of a
password as a sign of security.

Devs often hard-code admin access for
emergency administrative access.

= Example of a static password
OEM often set devices identical for ease.

= Example of a default password
I'll change it to something stronger.. .later.

Randomness ?Aﬁ;..‘l

N~ 4

Random data is unpredictable bits to the
attacker without any pattern or structure.

Any bit has exactly the same chance of:
= Being 0 (50%)
= Being 1 (50%)

Computers are really bad at randomness
Humans are also really bad at
randomness

Failure: Poor Entropy

Humans are a poor source of entropy

Commonly Used
Passwords (2019)

123456
123456789
qwerty
Password
1234567
12345678
12345
iloveyou
111111
123123

abcl23 888888
gwertyl23 princess
1g2w3edr dragon
admin passwordl
gwertyuiop 123gqwe
654321

555555

lovely

777777

welcome

Predictable Patterns
Incrementing suffix
= staticl||1/2/3/4/...

= static||Jan/Feb/Mar/...
Repeated words

= static||static||tag
Usage reference

= static||Google/Twitter/...

Failure: Reuse

Humans reuse passwords due to
relatively small storage capacity

Nearly everything requires a login

= Important and unimportant services
Passwords used passwords (~48 hours)

Phone (x4) Gmail (x5)

BIOS (x2) AU SSO login (x1)

OS login (x9) Amazon (x2)

Disk encryption (x7) File Encryption (many)
Data Services (x3) Banking (x5)

How Passwords are Abused T;.;A.T

N~ 4

Problem: Online Guessing ,A

N~ 4

An Online Password Guessing Attack is
where an actor treats the authentication
server as an oracle to identify when it has
found the correct password.

123456

Failure: Poor Entropy

Humans are a poor source of entropy

Commonly Used Predictable Patterns
Passwords (2019) = Incrementing suffix
= staticl||1/2/3/4]...

123456 abcl23 888888

123456789 qwertyl23 princess - StatICIIJan/Feb/Mar/
qwerty lg2w3edr dragon et
Password admin passwordl

1234567 qwertyuiop 123qwe N Repeated Words
12345678 654321 H H

12345 555555 N Stath”StatIC”tag

il 1 1

loveyou lovely = Usage reference
123123 welcome

= static||Google/Twitter/...

Problem: Online Guessing A‘l

N~ 4

An Online Password Guessing Attack is
where an actor treats the authentication
server as an oracle to identify when it has
found the correct password.

Defenses

= Lock-out threshold — B

- Rate limits — o 9
- (re)CAPTCHAs —

= Anomaly detection Success

Problem: Phishing

Humans are poor judges of character

= Users predictably give passwords to
attackers without knowing they did so

ttttttttttttttt
||||||||||||||||

Problem: Phishing

Humans are poor judges of character

Google
|'From:' Charles
= ?Wtheaks Shop

Q

Hi Jo
Som
s T he Podesta Emails
Sa iately,
IP
Log WikiLeaks series on deals involving Hillary Clinton campaign Chairman John
0000 Podesta. Mr Podesta is a long-term associate of the Clintons and was President
CH, Bill Clinton’s Chief of Staff from 1998 until 2001. Mr Podesta also owns the both.
Best, Podesta Group with his brother Tony, a major lobbying firm and is the Chair of the The
The d

Center for American Progress (CAP), a Washington DC-based think tank. POdeSta
Emails

Read The Podesta Emails, Part 1: John Podesta and The Uranium One Story

You received

Problem: Password Breaches ,AT

A y |

Millions - | § @)l’xfw Jork @m ,
of hacked Th ‘ 1» €5
BIBICHN [inkedin IDs

NEWS advertised Passwords for 32M Twitter
'for sale'

Russian Hackers Amass Over

a Billion Internet Passwords
accounts may have been)
hacked and leaked A

LY 7
Companies face major financial, reputational,

and regulatory risks from breaches

= Can be mitigated by properly designed
infrastructure and protocols

Problem: Password Breaches H
N

Passwords should *NEVER* be

stored in plaintext in a
database *OR ELSEWHERE®*.

Passwords should *“NEVER* be

stored in plaintextin a
database *OR ELSEWHERE"*.

Passwords should *NEVER”* be
stored in plaintext in a
database *OR ELSEWHERE"*.

Problem: Offline “Cracking” A‘l

N~ 4

An Offline Password Guessing Attack is
where an actor treats a database of

protected (or unprotected) passwords as an
oracle for guessing passwords.

Exploits vuln

) .
Steals password
database

dl'S TECHNICA Q

25-GPU cluster cracks every standard
Windows password in <6 hours

All your passwords are belong to us.

DAN GOODIN - 12/9/2012, 6:00 PM

Welcome to Radeon City, population: 8. It's one of fivg
cracking cluster.

al HACKADAY =]

ALL YOUR PASSWORDS ARE BELONG TO FPGA

by: Tom Nardi

£ W V L =

Problem: Credential Stuffing A‘l

Credential Stuffing attacks involve reusing
kKnown username-password combinations
from one breach on a separate service.

Relies on: DO ITHE,
= Ubiquity of accounts T b
= Static email addresses

= Password reuse b
= Laziness -

Problem: Credential Pivoting A‘l

Humans fail to account for implicit trust
and reset mechanisms

Few services are willing (or able) to bind
userdata to passwords

= Treat passwords as a policy protection

Provide automated “password reset”
mechanisms usually through email

Attacker: Getting Creative AT

-

Locate door with
different properties
= Attackers can't fly but

also aren’t limited to
the ground-floor

Basics Include:

= DON’T USE STATIC
PASSWORDS

= Never write raw secrets
to non-volatile storage

= Be really careful when
logging related to auth

= Use pre-existing
frameworks

= DON’T USE STATIC
PASSWORDS

Server-Side Password DBs ?Aé.‘

N~ 4

Evaluate the below common but
poor-practices and identify a
scalable mechanism to recover the
plaintext passwords.

Store in plaintext Store as obfuscated
= abcl23 = B64(hex(abcl123))
Store as ciphertext Store as hashes

= Encrypt(s, abc123) = SHA256(abc123)

/g

N
|dentical passwords Length extension not
have different hashes useful attack
= Unique salt Rainbow tables are
Dictionary attacks infeasible for general
don’t scale case

= 1 common = n tries = Salt explodes space

/g

N~ 4

Alice:
salt,
Hash (s, | | abcde)
Bob:
salt,
Hash (s, | | fghij)
Charlie:
salts

Hash (s5] | k1mno)

Salted and hashed
password

Rely on difficulty of

preimage attacks and
uniqueness of salt

/g

N~ 4

Use-case makes otherwise undesirable

properties advantageous
Computationally slow is desired

= Takes relatively long time to hash

= Acts as natural rate-limit

Memory-Hard computation is desired

= Requires relatively large memory allocations

= Makes HW optimizations very difficult
Good functions: PBKDF2, bcrypt, scrypt

Defenses: Humans

/g

N~ 4

USE A PASSWORD MANAGER

Greatly improves best practice usability
User only has to remember single secret
Easy to rotate when necessary

Not all password managers are
created equal

@ LastPasse«.|

ERS

» Use cret

L q Choose where to save Save password?
a by You can save this password to

your Google Account or only on "? Save in your Google Account M

this device

N OI Username elisa.g.beckett@gmail.com a re

Password ~ sseessecess ®

Never

LastPass .|

Remove the human as much as possible

Automated generation

“ openssl rand —-baseocd 15

= dd if=/dev/random count=15 bs=1 | base6c4
Physical generation (“diceware™)

= Use wordlist to improve
usability and memorability

True Randomness A‘

-—r

True random data can not be created, it
can only be measured from an external
physical process.

Defenses: Fix The Root-Cause T@A{
N 4

/g

N~ 4

Multi-Factor Authentication (MFA) is an
approach that stacks authentication
mechanisms to mitigate each’s weaknesses.

= “two-factor authentication” (2FA)

= Something you know
= Password, PIN, pattern

= Something you have
= Phone, security token, ID card

= Something you are
= Biometrics

Multi-Factor Authentication

Something you know
= Password, PIN, pattern

= Something you can forget
Something you have

= Phone, security token, ID card

= Something you can lose
Something you are

= Biometrics
= Something you can mimic or cease to be

Computer and Network
SY-1dV] 14Y

Lecture 08:
Authentication

