Computer and Network
SY-1dV] 14Y

Lecture 12:
Binary Exploitation Toolbox

Buffer overflow example

void func 2 (char *str) {
char buffer[4]; « 4 Bytes
strcpy (buffer, str);

}

int main() {
char str = “1234567890AR";
func 2 (str) ;!)

} 12 Bytes

example2.s (x86)

func 2:
push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push ebp - 4
call strcpy
leave
ret
str ptr: “1234567890AB”

example2.s (x86)

?? FP &— ??== 0x35363738
func 2 N EIP ??2== 0x39304142

push ebp
mov ebp, esp
sub esp, 4
push [ebp + 8]
push ebp - 4
call strcpy
leave
ret
str ptr: “123456789AB”

Control Flow Hijacking T:.;A.T

N\ 4

Control flow hijacking is when the attack
gains the ability to maliciously influence the
program’s execution path.

End-goal of most binary exploitation
attacks and technique

If you control EIP, you control the world.

Return-to-Shellcode

Return-to-Shellcode is a binary
exploitation technique in which the attacker
injects and executes pre-compiled
instructions.

Insert instructions into buffer
Change EIP to point to own instructions
Achieve “remote code execution”

Stack Shellcode

Start of Buffer
(Oxfff£f£1234)

Return Address

b: e9 fb ff ff ff Jmp b < main+0xb>

Stack Shellcode

shellcode:

Jmp
Jmp
Jmp
Jmp
Jmp
Jmp
Jmp

shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode

Start of Buffer
(Oxffff1234)

Return Address

NOP Sleds & Repeats

Data vs. Code Clarity

No eXecute bit (NX bit)

= Hardware support for marking non-code
pages
Data Execution Prevention (DEP)

= Windows OS-level implementation
Write XOR Execute (W”X)

= Read/write (stack/heap)

= Executable (.text/code segments)
IDEA: Know what's code & what's data

Return-to-Shellcode

call strcpy
leave
ret

Return-to-libc

Employees must
2 wash hands before
returning to libc

Reuse code from vulnerable binary
= Already loaded into memory

= Already marked as executable
IDEA: Setup a ret soitactsas acall

Our World T:.;A.‘.

N\ 4

PRETEND THE WORLD
IS SIMPLE.

¥
9

It’s the 90s.

Nmap.org Npcap.com Sectools.org Insecure.org

Site Search Q

Bugtraq mailing list archives

By Date By Thread

List Archive Search ’g

Getting around non-executable stack (and fix)

From: solar () FALSE COM (Solar Designer)
Date: Sun, 10 Aug 1997 17:29:46 -0300

Hello!

I finally decided to post a return-into-libc overflow exploit. This method
has been discussed on linux-kernel list a few months ago (special thanks to
Pavel Machek), but there was still no exploit. I'll start by speaking about
the fix, you can find the exploits (local only) below.

[T recommend that you read the entire message even if you aren't running
Linux since a lot of the things described here are applicable to other
systems as well (perhaps someone will finally exploit those overflows in
Digital UNIX discussed here last year?). Also, this method might sometimes
be better than usual one (with shellcode) even if the stack is executable.]

Return-to-libc

SETUP AS A FUNCTION CALL

retumtof

fzargs
fa local vars

Return-to-libc

SETUP AS A FUNCTION CALL SETUP AS ARETURN

Csovedfies | puin

retmtofs || Jossjumcrtr

f2 args pad 2
fa local vars f999 args

Call to execv()

Default (less)

Default (less)

NAME
execl, execle, execlp, execv, execvp, execvP

LIBRARY

DESCRIPTION
exec

Call to execv()

int main() {
// Trailing 0 indicates
// end of argument array.
char* arr[] = {"/bin/1ls”, 0}

execv ("/bin/ls", arr);

Call to execv()

execv (" /bin/ls", arr):

push arr ptr
push bin str
call execv

RODATA.:
path ptr: “/bin/ls”

Call to execv()

execv (" /bin/ls", arr):

push arr ptr
push bin str
call execv

RODATA.:
path ptr: “/bin/ls”

Call to execv()

execv (" /bin/ls", arr):

push arr ptr
push bin str
call execv

RODATA.:
path ptr: “/bin/ls”

Call to execv()

execv (" /bin/ls", arr):

push arr ptr
push bin str
call execv

RODATA.:
path ptr: “/bin/ls”

execv() Call vs. Return-to-Libc H

N\ 4

AS A FUNCTION CALL

ret

bin str

arr ptr

execv() Call vs. Return-to-Libc .'AT

N 4

AS A FUNCTION CALL AS ARETURNTO LIBC

vuln buffer

execv() addr ‘

pad 2
bin str

arr_ptr

execv() Call vs. Return-to-Libc .'AT

N 4

AS A FUNCTION CALL AS ARETURNTO LIBC

vuln buffer

arr

execv() addr

pad 2
bin str

arr_ptr

Return-to-libc

Default (less) 32
Default (less)

NAME
mprotect

SYNOPSIS
#include <sys/mman.h>

mprotect

DESCRIPTION
mprotect

/g

N\ 4

Does DEP prevent
return-to-libc attacks?

/g

N\ 4

Does DEP prevent
return-to-libc attacks?

k* N O*

DEP tracks segment’s logical meaning to to
prevent code vs. data confusion
Return-to-libc is data vs. data confusion

= Attacker-supplied data vs. compiler-created data

Fixing the Root-Cause is HARD H
N\ 4

The fundamental problem is not that new
code can be executed, it's that the attacker
can change memory in ways assumed to be
impossible.

Root cause is that the attacker can cause
the code to “write out of bounds”

Can’t patch every line of C ever written
Can’t check every variable after stack-write

Stack Canaries

The return-address is the most predictable
and easiest to exploit for attackers

= Others are possible

IDEA: If defender can’t prevent
buffer overwrites, at least fail-safe
when the most predictable and
widely-used version is discovered.

= Memory between buffer and
return-address changes unexpectedly

Stack Canaries

on function call:

canary = secret

Stack Canaries

vulnerability:

strcpy (buffer, str)

Ox41414141

Stack Canaries

on function return:

if canary !'= secret:
goto CRASH SAFELY
ret

Ox41414141

Stack Canaries

*** stack smashing detected ***

on function return:
if canary !'= secret:

goto CRASH SAFELY
ret

Ox41414141

Buffer Over-Read ?Aﬁl.‘

N\ 4

Humans are bad at safely extracting data
from buffers similar to being bad at safely
inserting data into buffers

Buffer overflow bugs in reverse

IDEA: Read off the end of a buffer

Buffer Over-Read

void send buffer (int sock, char* buf) {
int fieldlLen = 0;
read (sock, &fieldLen, 4);
write (sock, buf, fieldlen);

}

Buffer Over-Read

Buffer Over-Read

Buffer Over-Read

y

(knows canary value)

Buffer Over-Read

e

on function return: canary

if canary !'= expected:
goto CRASH SAFELY

ret PASS

Return Oriented Programming

The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

Hovav Shacham
Department of Computer Science & Engineering
University of California, San Diego
La Jolla, California, USA
hovav@hovav.net

ABSTRACT

We present new techniques that allow a return-into-libc at-
tack to be mounted on x86 executables that calls no func-
tions at all. Our attack combines a large number of short
instruction sequences to build gadgets that allow arbitrary
computation. We show how to discover such instruction se-
quences by means of static analysis. We make use, in an
essential way, of the properties of the x86 instruction set.

using the short sequences we find in a specific distribution
of GNU libe, and we conjecture that, because of the proper-
ties of the x86 instruction set, in any sufficiently large body
of x86 executable code there will feature sequences that al-
low the construction of similar gadgets. (This claim is our
thesis.) Our paper makes three major contributions:

1. We describe an efficient algorithm for analyzing libc to
recover the instruction sequences that can be used in

= Commonly called “ROP”
Arbitrary instructions via ROP “gadgets”
IDEA: Return-to-libc w/o functions

ROP Concepts

int £9(int* arr) {

}

arr[10]

0x00;

Execute existing
code instructions

Each gadget is very
small amount of logic

Gadget ends with
ret instruction

ROP Gadget

RETURN-TO-LIBC ROP GADGET
£9: £9+0x20:
push ebp sub eax, 10

mov esp, ebp

mov eax, [ebp + 4]
add eax, 10

mov [eax], 0x00
sub eax, 10
leave

ret

arg[1l0] = 0x00

ROP Concepts

gadget: Wide array of
i‘ﬂ’ eax, 10 gadgets in normal
eave . .
lon
et applications
gadget; Can use I|nked I|bS
sub eax, 10 for more gadgets &
add ebx, 0xl11 more stable gadgets
mov edx, eax
shr edx, 3 T ”
leave Logic is “messy

ret = Lots of side-effects

ROP Chains

Gadget1: Gadget3:
mov eax, 0x10 mov [eax+8], eax
ret ret

Gadget2: Gadget4.:
add eax, ebp mov ebp, esp

ret ret

ROP Chains

Gadget1:

mov eax, 0x10,; ret

Gadget2:

add eax, ebp; ret

Gadget3:

mov [eax+8], eax;
ret

Gadget4.

mov ebp, esp; ret

ROP Chains

Gadget1:

mov eax, 0x10,; ret

Gadget2:

add eax, ebp; ret

Gadget3:

mov [eax+8], eax;
ret

Gadget4.

mov ebp, esp; ret

ROP Chains

ROP Chain:

ROP Chains

ROP Chain:

mov eax, 0x10

ROP Chains

ROP Chain:

mov eax, 0x10
mov eax, 0x10

ROP Chains

ROP Chain:

mov eax, 0x10
mov eax, 0x10
add eax, ebp

ROP Chains

ROP Chain:

mov eax, 0x10
mov eax, 0x10
add eax, ebp
mov [eax+8], eax

ROP Chains

ROP Chain:

mov eax, 0x10
mov eax, 0x10
add eax, ebp
mov [eax+8], eax
mov ebp, esp

ROP Gadgets

ret == 0xc3
= Could be part of another instruction

= Could be part of an address
X386 uses “variable length instructions”

= The instructions’ bytes are interpreted based
on where decoding starts (EIP location)

Any 0xc3 byte is a valid ROP gadget

ROP

ret == 0xc3
Could be part of another

Could be part of an addr
X86 uses “variable lenc

The instructions’ bytes a
on where decoding start:
Any O0xc3 byte is a vali

Instruction Decoding H

N\ 4

Bytes in the Code Section:
00 F7 C7 07 00 00 OO0 Of 95 45 c3

Full Gadget:

Instruction Decoding

00 F7 C7 07 00 00 00 Of 95 45\\:;}3

ret

Full Gadget:
ret

Instruction Decoding

00 F7 C7 07 00 00 00 Of 95 45“;3

ret

inc ebp

Full Gadget:
inc ebp
ret

Instruction Decoding

EIP

00 F7 C7 07 00 00 00 Of 95 45“;3

ret

inc ebp

Full Gadget:
xchg ebp, eax
inc ebp
ret

xchg ebp, eax

00 F7 C7 07 00 00 00 Of 95 45 c3

Full Gadget: v

setnzb [ebp-61] setnzb [ebp = 6]
<no return>

Instruction Decoding

EIP

l

00 F7 C7 07 00 00 00 Of 95 45 c3

Full Gadget:

<none 1invalid instruction>

Instruction Decoding

EIP

l

00 F7 C7 07 00 00 00 Of 95 45 c3

Full Gadget:

<none 1invalid instruction>

Instruction Decoding

EIP

l

00 F7 C7 07 00 00 00 Of 95 45 c3

Full Gadget:

<none 1invalid instruction>

Instruction Decoding

EIP

l

00 F7 C7 07 00 00 00 Of 95 45 c3

Full Gadget:

<none 1invalid instruction>

Instruction Decoding

EIP

l

00 F7 C7 07 00 00 00 Of 95 45 c3

mov edi, O0xO0F000000 inc ebp

Full Gadget:
mov edi, 0xO0F00000Q " P

xchg ebp, eax
inc ebp
ret

Instruction Decoding

EIP

ll

00 F7 C7 07 00 00 00 Of 95 45 c3

L=======j========J

test edi, 0x00000007

Full Gadget:
test edi, 0x00000007 == feop = o

setnzb [ebp-61]
<no return>

Instruction Decoding

EIP

lbO F7 C7 07 00 00 00 Of 95 45 c3

FU” Gadget:mov edi, 0xOF000000 inc ebp
add bh, dh
mov edi, O0xOFO000000
xchg ebp, eax
inc ebp
ret

xchg ebp, eax

ASLR 7.%.‘

N\ 4

Address Space Layout Randomization
Requires many changes to compilation
and/or loading

= Code must be “relocatable” or “position
iIndependent”

= <Details are out-of-scope>

IDEA: Make it impossible to predict addrs

0x000000

OxXFFFFFFFF

OxXFFFFFFFF

OxXFFFFFFFF

Memory Layout (with ASLR) AT

N\ 4

0x000000

OxXFFFFFFFF

Memory Layout (with ASLR) AT

N\ 4

0x000000

OxXFFFFFFFF

Memory Layout (with ASLR) H

0x000000

OxXFFFFFFFF

Computer and Network
SY-1dV] 14Y

Lecture 12:
Binary Exploitation Toolbox

