Computer and Network
SY-1dV] 14Y

Lecture 14:
OS & Hardware Security

Do you trust other people’s ?Aé.‘

code? S——

= Do you use an HP computer?
= Android OS or Google’s Android Apps?

= Google services (GMail, Docs, Calendar, etc)?

i : 1-“,!"{}!/////};.!:! !?;1/ l//lfl o /
j e i

T

L

Finster Professor Shady Professor Profesor Turbio

Architectural Defenses

An architectural defense is one which is
both generic in terms of implementation and

focused on isolating a potential misbehaving
application or process.

Not tied to a specific application or attack

Can defend against unknown attacks in
the future due to generality

No logical interaction
across boundary
Physical data transfer
across boundary

L
=

. P~ notch closed
[c ‘ [c —_ means you side means
G L i P Vbbb disk is high
,_.’ - i] _ the disk density
Network 2 air gap » network 1

/g

\ 4

OS-level isolation

= Similar to dual-boot but simultaneous
= A "hypervisor” coordinates hardware access
OSes are isolated (Linux VM on Windows)

Virtual Machine Monitor (hypervisor)
Hardware

= Perspective-level isolation
= Shared kernel w/ isolated perspective

= Each container thinks it's the only thing running
on the entire computer

Conta

-

Virtual Machines Containers

= Memory-level isolation
= Managed via OS scheduler
= Extremely efficient due to virtual memory

U. process 1

process 2

Operating System

/g

N~ 4

Logic-level isolation (code logic)
Threads interact via memory & |IPCs
Tainted threads can be killed and restarted

/g

N~ 4

“Do one thing and do it safely”

A “policy engine” can blindly enforce data
interactions and data exchanges

Very useful for web browsers

= Request content, run JS, render image, etc

are *very* different things with predictable
Inputs and outputs

Better than nothing but is exceptionally
difficult to internally isolate behavior

/g

N\ 4

Permission-level isolation

HEAVILY patched set of kernel modules
“‘Know what an application is suppose to
do and don't let it do anything else.”

User-space applications Policy utilities

= 1s doesn’t need
network access Ty y-— t
i

A

User-space

= Print driver doesn'’t M- Security

polic

need keystrokes Y T
Request

Kemel — =

Response

Kemel-space

Hardware

/g

N~ 4

Required to install a shady VTC program?

= Get a $50 tower from 2012 and $20 monitor
Need to test a really sketchy app?

= Get a $30 Android phone with Wifi
Need to install a known-spyware extension?

= Chromebooks are $100 on-sale

What do you think?

ﬁavast

I McAfee

Noﬂon

/g

N~ 4

Anti-Virus and “host-based defense
systems” are ... complicated...

Good — They can quarantine and alert you
when there’s known malware.

Maybe — They can only tell you about
known malware and the naive versions
Bad — They love to quarantine dev-tools
and known-benign security tools/apps
Worse — They have to touch everything

Lines of Code

Malware:
125 lines of code*

1

2010

" Maiware lines of code avesaged over 9,000 samples

e asd
Owtrtastion A Agprowved fur i Rkcase. Detribution

Software Facts of Life

Software has bugs

Some bugs are weaknesses

Some weaknesses are vulnerabilities
Some vulnerabilities [FEASEHES

can be exploited

Something that fails in unintended ways

Someone has an eakness

Bug that may be able to harm S&P

interest in exploiting || = Vaneraiey

exploitation Weakness which can be intentionally triggered

for attacker’s gain

others for gain -

Way to leverage a vulnerability

~—

A Tavis Ormandy &
@taviso

| have something fun for you, | pulled the javascript
interpreter out of Avast and ported it to Linux &

This runs unsandboxed as SYSTEM, any vulns are
wormable pre-auth RCE on 400M endpoints "\ _(V)_/~

github.com/taviso/avscript 0

2:59 PM - Mar 9, 2020 - Twitter Web App

1.1K Retweets 99 Quote Tweets 3.1K Likes

dl'S TECHNICA Q

1]
4

BIZ & IT—

This Windows Defender bug was so gaping
its PoC exploit had to be encrypted

Is there a fuzzer in the house?

DAN GOODIN - 6/26/2017, 7:10 PM

Avast Antivirus JavaScript Interpreter

The main Avast antivirus process is called AvastSvc.exe, which runs as SYSTEM.

NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITLOCAL SERVICE
NT AUTHORITYILOCAL SERVICE
R SE

........

NT AUTHORITALOCAL SERVICE

Increased
Security

0/20
0/12

. Decreased Severely
TLS Security

18/20 10/20
6/12 5/12

Client Security
Products

2/20
112

Middleboxes

Threat Modeling

A systematic approach to analyzing and
understanding potential weaknesses.

Identify Enumerate
Potential Mitigation
Weaknesses Options

Evaluate j‘

Mitigate Trade Offs

Trusted Computing Base A‘l

N~ 4

The Trusted Computing Base (TCB) is the
collection of all components within a system
critical to providing security properties.

— Applications -

= Operating

|ﬂ_‘ System | I
HyperVisor

Resource Abstr: and
Control Layer
Physical Resource Layer

Hardware '
Facility]
A
Figure 15: Cloud Provider - Service Orchestration

Local TCB

Applications

Operating
System

HyperVisor

Everything needed to
run the application
safely

Each layer relies on
the layers below it to

behave correctly

Turtles All The Way Down AT

N~ 4

Attack surface is
exponentially larger b/c
malicious lower-levels

Level N bug means
levels >=N are
untrustworthy

Bugs and vulns mimic
each other due to
abstraction

Let’'s Connect to a Server AT

N\ 4

Let’s Connect to a Server ?Aél.‘
N~

Bash Environment

Let’s Connect to a Server

O DISCONNECTED
CONNECT!

(Q WAIT.VERSION
VERSION!

VERSION?
VERSION.RECEIVED
VERSION!

{O VERSIONSENT

KEXINIT?

KEXINIT_RECEIVED

KEXINITSENT O KEXDH.INIT_SENT
KEXDH_INIT! KEXINIT!
KEXINIT_KEXDHINIT SENT
WAIT_KEXDH_REPLY

KEXDH.INIT.REPLY KEXINIT.NOTR

COMMUNICATION

= Bash Environment
= SSH protocol design

Let’'s Connect to a Server AT

N~ 4

« Bash Environment
= SSH protocol design
= SSH app architecture

Gkamai La

Blog

Security Research

XZ Utils Backdoor — Everything You Need to Know, and What You Can Do

XZ Utils Backdoor — Everything You Need

to

Know, and What You Can Do

((2 Akamai Security Intelligence

Group Share B X @
April 01,2024

CVE-2024-3094 is a vulnerability discovered in the open-source library XZ Utils

that stems from malicious code that was pushed into the library by one of its
maintainers.

Bas

SS
SS
SS

N Environment
protocol design
app architecture

app logic

SEC) :
: Hon(C, K, T) O (GoodKeyAgainst(X, AKey) v X € {C, K, T})

SECakey

SEC;key :
AUTHas :

AUTH,gs :
SECElent |

o :
SECClient

: [KAS]|x SEC,pey
: [TGS|r SECakey

akey

SECkas

akey

SEC!%*

akey

SECGS
: [TGS|r SEC;key

skey *

SEC:2:

Hon(C, K) D (GoodKeyAgainst(X, k) v X € {C, K})

Hon(C, K, T, §) D (GoodKeyAgainst(X, SKey) v X € {C, K, T, 8})

3n. Send((K,n), Certk .SIG[skk|(“DHKey".gy.11). Esym [k 1] (AKey.C).
E.ym|k](AKey.n,.T))

3n. Send((T', n), C.Esym ks 1)(SKey.C).Esym[AKey)(SKey.n2.5))

[Client|c SEC)

[Client]c SECakey

[Client|c SEC ey

SEC** .

AUTH et
: [TGS]r Hon(T, K)

AUTH}S®

kas

AUTHS o™
AUTHESTer s

[KAS]x SECk

[Client]c Hon(C, K) D AUT Hya.

D 3ny, k, gy, 11. AUTHgas
[Client] Hon(C, K, T) D AUTH,,,
[Server]s Hon(S,T)

D dnz, AKey. AUTHyg,

Table 1. DHINIT Security Properties

C — K(I) : Certc.SIG[skc|(“Auth’ . HASH (C.T.n1).11.92).C.T.ny
I — K : Cert;.SIG|sk;|(“Auth” . HASH(I.T.n,).1,.gz).1. T.n,
K — I — C : Certx .SIG[skk|(“DHKey” .gy.11).
Esym k5 1] (AKey.I). Esym k] (AK ey.n,.T)

Bash Environment
SSH protocol design
SSH app architecture
SSH app logic
Crypto math

Bash Environment
SSH protocol design
SSH app architecture
SSH app logic

- Crypto math

Crypto implementation

CONNECT/SYN (step 1 of the 3-way-handshake)

3] o ST
p =
> servedsender path LISTEN- n CLOSE-
L CLOSE/-
(Step 7 of the 3-way-handshake) SYN/SYN+ACK
A
RSTH SEND/SYN
> SYN
SYN/SYN#ACK (simultaneous open) SENT

Data exchange occurs
e I -

(Step 3 of the 3-way-handshake)

FINIACK

CLOSE/FIN
CLOSE/FIN
Y FINIACK.
FIN WAIT 1
FINPACKIACK |
ACK-

(G0 back 1o score) [JEEOSEBIN ~—

[[Active crosE] [Passive cLosg]

>| cLosING

ACK/-

FIN WAIT 2) >| mmewarr

;
' CLOSE/FIN

LAST ACK

Process TCP (14)
ACK bt s oft
{90%) e Ackis o> O et
SND.UNA < SEGACK S SND.NXT (no) (R
New and
invaikd ACK.

valid ACK. ropt

<SEG.ACK = SNO.UNA>A2L

Duplicate ACK

Third duplicats
ACK!
SND.UNA = SEG.ACK Fourth or more
ExpBoff = 1 9 AOK~—
perform (Fast
‘Seqment (.a

SEQ=SEGACK,

ACKs{7],

CTL =)

I Ths s -
@ SSthrash = max(2. from the Rexmt Queue.

min (CWND, SNDWND/2))
CWND = SSresh + 3

 mm—

Bas

SSH
SSH
SSH

N Environment
protocol design
app architecture

app logic

Crypto math
Crypto implementation

Channel design

Bash Environment

SSH protocol design
SSH app architecture
SSH app logic

Crypto math

Crypto implementation
Channel design
Channel implementation

SS
SS
SS

N Environment
protocol design
app architecture

app logic

Crypto math

Crypto implementation
Channel design
Channel implementation
OS implementation

8 A et

Wl
FARON

“I@é

Raspberry 51 4 Model B - 4GB
bootloader: 8ba17717 2023/01/11
update-ts: 1674059736

board: ¢c@3111 ea808425f dc:a6:32:1b:13:be
boot:

mode USB-MSD 4 order f41 retry 0/128 restart 2/-1
SD: card detected 000353445343333247802a0df0260137
part: @ mbr [@xoc:00000800 0x83:00080800 0x00:00000000 0x00:00000000 |
fw:
net: down ip: 0.0.0.0 sn: 0.0.0.0 gw: 0.0.0.0
tftp: 0.0.0.0 00:00:00:00:00:00
isplay: DISP@: HDMI HPD=1 EDID=ok #2 DISP1: HPD=0 EDID=none #9

3¢ @ fat-sectors 10 c-count 516199 c-size 0
ot dir cluster 2 sectors @ entries @

lock device timeout

>ot mode: USB-MSD (04) order f

3B2[1) 400202e1 connected

3B2 root HUB port 1 init

5B MSD stopped. Timeout: 25 seconds

>ot mode: RESTART (©f) order @

ot mode: SD (81) order f4

ailed to open device: 'sdcard’ (cmd 33320010 status 1fff6206)
ailed to

open device: 'sdcard’' (cmd 33320010 status 1fffe206)
>ot mode: USB-MSD (04) order f

3B2[1] 400202e1 connected

35B2 root HUB port 1 init

5B MSD stopped. Timeout: 25 seconds
>ot mode: RESTART (8f) order @

ot mode: SD (©1) order f4
viled to

open device: 'sdcard’ (cmd 33320010 status 1fff0206)
viled to open device: 'sdcard’

(cmd 37120010 status 1fffeeee)
ot mode: USB-MSD (@4) order f
82(1) 400202e1 colected
root HUB port 1 init

Bas

SSH

SSH
SSH

n Environment
protocol design
app architecture

app logic

Crypto math

Crypto implementation
Channel design
Channel implementation
OS implementation
Firmware for HW

Let’'s Connect to a Server

4 x USB 2
Ports

Ras bgrr Pi 35 Dimensions ¢
Broadco _oontid Y 10/100
Quad Core CPU ool | ' <

;) /.LANP ort

s ,/«' 35mm4r ole

.
b
p R R

St
' '.,.o 5 > »\)“O utpu tJ ck
./7 e o \ CSI Camera Port
MI\USBPW r Input. CIJISOPD'tM

DSI Display Port Upg d d wlt hh ed
ﬂ dl pt 2 5Amp

Bash Environment
SSH protocol design
SSH app architecture
SSH app logic

Crypto math

Crypto implementation
Channel design
Channel implementation
OS implementation
Firmware for HW

HW components

Rowhammer

Project Zero

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to gain kernel privileges

Posted by Mark Seaborn, sandbox builder and breaker, with contributions by Thomas Dullien, reverse

[This guest post continues Project Zero's practice of promoting excellence in security research on the P,
blog]

engineer

roject Zero

dl'S TECHNICA Q=

Researchers use Rowhammer bit flips to
steal 2048-bit crypto key

RAMBIleed side-channel attack works even when DRAM is protected by error-
correcting code.

1/2019, 12:00 PM

Allows arbitrary
process to flip bits in
physical memory

Predictable but not
100% perfect

Think of all the things
you can do with 1 bit.

Debug Unit

Custom Always-On

ROM | OTP | eFlash

Always-On Block

Power Management

Instruction SRAM

Power-On Reset

Instruction Prefetch

Brown-Out Reset

Instruction Cache

Watchdog Timer

Branch Prediction

Clock Generation

Inst. Decompressor

i

3

E3 RISC-V Coreplex

Platform-Level
Interrupt Control

(RV32E/VM/C/N) Counter/Timer
Multiplier/Divider PWM
Custom Instructions GPIO
Memory Protection UART
12C
DMA SPI
Data SRAM ADC
NVM/EEPROM DAC
SD/eMMC
UsB 1.1/2.0 OTG
Custom Accelerators Ethernet 10/100/1G

Custom VO

Bash Environment
SSH protocol design
SSH app architecture
SSH app logic

Crypto math

Crypto implementation
Channel design
Channel implementation
OS implementation
Firmware for HW

HW components

SoC design/impl.

Chip design/impl.

This closed source non-auditable subsystem

e Access all areas of your computer's memory, without the CPU’s knowledge.

e Access every peripheral attached to your computer.

e Set up a TCP/IP server on your network interface that can send and receive

= MIGIEB] cecxowmmer susteess cotune sear wose v stox Q

Intel Chip Flaws Leave Millions of
Devices Exposed

Security experts have warned of Intel's Management Engine for years. A new
set of confirmed vulnerabilities that impact PCs, servers, and loT devices
shows they may have been right.

Completely separate
co-processor built into
Intel CPUs

AMD Platform Security
Processor (AMD PSP)

= All chips since 2013
Intel Management
Engine (Intel ME)

= All chips since 2008

ddddd
llllll

. RISC-V core _

t

ata o
aaaaa

TCDM - Log. Interconnec

Bash Environment
SSH protocol design
SSH app architecture
SSH app logic

Crypto math

Crypto implementation
Channel design
Channel implementation
OS implementation
Firmware for HW

SoC design/impl.

CPU design/arch

Page Discussion Read View source View

CPU Bugs

Computers are made by humans, and thus inherently prone to errors. This page describes known bugs for various models and brands.

R Contents [hide]
Main Page 1 Affecting almost all modern architectures
Forums 1.1 Spectre

FAQ 2 x86 misfeatures

OS Projects 2.1 ESP is not cleared

Random page 2.1.1 Mitigations

2.2 NULL selector load may not clear MSR_GS_BASE
2.2.1 Mitigations

About
2.3 FXSAVE/FNSAVE
This site 2.4 SYSRET
Joining 2.4.1 Mitigations
Editing help 2.5 SS selector
Recent changes 2.5.1 Mitigation
2.6 PUSH selector
Toolbox 2.6.1 Mitigation
2.7 Nesting of NMI interrupt
What links here 3 Intel
Related changes 3.1 Transactional Synchronization eXtensions (TSX) Bug
Special pages 3.2 Extended Page Table (EPT) Bug
Printable version 3.3 FOOF Bug
Permanent link 3.4 FDIV bug
3.5 Buggy HLT
3.6 Core-microarchitecture Bugs
3.7 'Meltdown' Page Table Bug
4 AMD
4.1 DragonFly BSD Heavy Load Crash
4.2 Ryzen Bug
4.3 CPUID Bugs
5 Cyrix

5.1 Coma Bug

CPU Bug Examples

Pentium FDIV Bug

¢ = 4195835/ 3145727

appeared to be an instance of the worst case error. Coe did his
analysis without actually using a Pentium—he doesn’t own
one. To verify his prediction, he had to bundle his year-and-
a half old daughter into his car, drive to a local computer
store, and borrow a demonstration machine.
The true value of Coe’s ratio is

¢ = 133382044

But computed on a Pentium, it is

¢ = 1.33373906. ...

Cyrix Coma Bug

unsigned char c[4] = {0x36, 0x78, 0x38, 0x36};
int main()

{
asm (
5 movl $c, tebx\n"
"again: xchgl (%ebx), %eax\n"
g movl $eax, %edx\n"
2 jmp again\n"
)i

}

CPU Microcode A‘l

N~ 4

Microcode is firmware that acts as a
translator for CPUs and turns opcodes into
micro-operations which are executed.

RISC won the RISC vs. CISC War

= RISC-style is much more efficient
Allows manufacturers to patch w/o recall

= Just install a microcode patch
Completely unknown to almost everyone

Software Facts of Life

Software has bugs

Some bugs are weaknesses

Some weaknesses are vulnerabilities
Some vulnerabilities [FEASEHES

can be exploited
Someone has an et
interest in exploiting || &8 | [oty
others for gain
Malware is a different

breed of software

Microcode Vulnerabilities

Side Channel Vulnerabilities:
Microarchitectural Data Sampling and
Transactional Asynchronous Abort

dal'S TECHNICA

SPECULATIVE EXECUTION STRIKES AGAIN —

Intel SGX is vulnerable to an unfixable flaw
that can steal crypto keys and more

Just when you thought it was secure again, Intel's digital vault falls to a new
attack.

DAN GOODIN - 3/10/2020, 5:40 PM

Bash Environment
SSH protocol design
SSH app architecture
SSH app logic

Crypto math

Crypto implementation
Channel design
Channel implementation
OS implementation
HW components

SoC design/impl.

CPU design/arch
Sub-component impl.

Hardware Trojans

Hardware trojans are just like trojan horse
malware except implemented in hardware
from the manufacturer.

Known capability but never seen (AFAIK)

Hardware Trojans

BM o BR Microsoft

TSV+Wirebond Cross Section
~

1™

—— ——
> »| o) 24:19/4537 - Wirebonded Implants > o @ *HD [3 o]

BlueHat IL 2019 - Andrew "bunnie" Huang - Supply Chain Security: "If | were a Nation State...” 30C3: The Exploration and
Exploitation of an SD Memory...

16,705 views * Feb 14,2019 iy 338 GJ DISLIKE > SHARE =+ SAVE

Bitstream

Additional code, intentional
code errors (in-house, 3PIPs) Modifications through manual
changes, tool scripts

Bash Environment
SSH protocol design
SSH app architecture
SSH app logic

Crypto math

Crypto implementation
Channel design
Channel implementation
OS implementation
HW components

SoC design/impl.

CPU design/arch
Sub-component impl.
Silicon traces

Stealthy Dopant Trojans

Stealthy Dopant-Level Hardware Trojans *

Georg T. Becker!, Francesco Regazzoni?, Christof Paar!'3,
and Wayne P. Burleson!

! University of Massachusetts Amherst, USA
2TU Delft, The Netherlands and ALaRI - University of Lugano, Switzerland

3Horst Gortz Institut for IT-Security, Ruhr-Universitit Bochum, Germany

N
P Vel
N-Dopant
P-Dopant
1L, Active ares
- I poly
- Il Contact
B Metal 1

(a) Original

Fig. 1. Figure of an unmodified inverter gate (a) and of a Trojan inverter gate with a

constant output of Vpp (b).

N'Well
Pwell

N-Dopamt
P-Dopant

[Active area

(b) Trojan

Stealthy Dopant Trojans

Trojan area

bl ?1

‘ ’ :luu-

iy E.W[rz.’aﬂ

Fig. 2. Layout of the Trojan DFFR.X1 gate. The gate is only modified in the high-
lighted area by changing the dopant mask. The resulting Trojan gate has an output of
Q = Vpbp and QJV = GND.

Let’s Connect to a Server A‘l
N~ 4

Trusted Computing Base A‘l

N~ 4

The Trusted Computing Base (TCB) is the
collection of all components within a system
critical to providing security properties.

— Applications -

= Operating

|ﬂ_‘ System | I
HyperVisor

Resource Abstr: and
Control Layer
Physical Resource Layer

Hardware '
Facility]
A
Figure 15: Cloud Provider - Service Orchestration

Hardware Security Primitives ,AT
Y ~ =

Similar to cryptographic primitives,
Hardware Security Primitives provide
discrete functionality at the silicon-level
which can be used as building-blocks.

Security CPU Instructions

AES-NI
Perform specific AES
operation in HW
= Encrypt/Decrypt round
= Generate round key

Instruction Description(?]
AESENC . Perform one round of an AES encryption flow
AESENCLAST - Perform the last round of an AES encryption flow
AESDEC A Perform one round of an AES decryption flow |
AESDECLAST | Perform the last round of an AES decryption flow

AESKEYGENASSIST @ Assist in AES round key generation
AESIMC Assist in AES Inverse Mix Columns

PCLMULQDQ V Carryless multiply (CLMUL)®!

Security CPU Instructions

AES-NI

Perform specific AES
operation in HW

= Encrypt/Decrypt round
= Generate round key

Instruction
AESENC
AESENCLAST
AESDEC
AESDECLAST
AESKEYGENASSIST
AESIMC

PCLMULQDQ

Description(?]
Perform one round of an AES encryption flow

Perform the last round of an AES encryption flow

| Perform one round of an AES decryption flow

Perform the last round of an AES decryption flow

7 Assist in AES round key generation

Assist in AES Inverse Mix Columns

Carryless multiply (CLMUL)®!

RDRAND

Read random value
from HW and store in
given register

RDRAND—Read Random Number

Opcode*/
Instruction

NFx OF C7 /6
RDRANDr16

NFx OF C7 /6
RDRAND r32

NFx REXW + OF C7 /6
RDRAND r64

RDRAND Leakage

Special Register Buffer Data Sampling (SRBDS) Hardware Vulnerability in Intel CPUs
(CVE-2020-0543, aka Crosstalk)

It was discovered that special register buffer data of certain Intel CPUs may be exposed to a malicious process executing on the same CPU. Particular
processor operations (e.g RDRAND, RDSEED) use data from outside the physical processor core - this can be done via an internal microarchitectural
operation called a special register read. This uses part of a shared staging buffer which may not be completely zero'd on subsequent uses by other threads.
As such, a local attacker may be able to infer stale values which were previously returned from special register reads to other processors (as their contents
may still be present in other parts of the shared staging buffer). Some special register reads return sensitive information (such as RDRAND, RDSEED and
SGX EGETKEY) and so an attacker executing code on the same CPU may be able to infer these values for another thread / process executing on the same
CPU.

This attack relies on the same techniques used to exploit previous microarchitectural speculative execution vulnerabilities such as MDS and TSX
Asynchronous Abort, and affects some client and Intel® Xeon® E3 processors; it does not affect other Intel Xeon or Intel Atom® processors.

Mitigations for this issue are provided by CPU microcode updates via the intel-microcode package. This mitigation consists of ensuring data in the
shared staging buffer is overwritten by the RDRAND, RDSEED and EGETKEY instructions and serialising execution of RDRAND etc instructions across multiple
logical processors. As a result, this will have an effect on the performance of these instructions. In conjunction, the microcode updates also supports an opt-
out mechanism so that performance can be restored if desired - to support this, the Linux kernel supports a kernel command-line option srbds=off to
allow system administrators to make use of the opt-out mechanism. For details on the boot command line option and how to check system status, please
see the Linux Kernel Special Register Buffer Data Sampling Admin Guide.

Oversimplified Descriptions T@A{

N~ 4

= Security CPU Instructions
= Trusted actions in standard hardware

) bo,o bo,1 bo,z bo,3
-SubBytes
> b1,o b1,1 bl,Z b1,3
bz,o bz,1 bz,z 2,3
; bs,o b, 32| Y33
\ 7’
S bo.s
} ; bo, 0,2 bo,3
(o] &8
; > bl,u u D, b1,3
bz,o b2,1 D, bz,3
A
b ., | b
3,0 32| Y33
/ 143'1
& c(x) —
80,0| Q0,1 | Q02| Q03 bo,o bo,1 bo,z bo,3
al,O al a12 a1,3 > b1,0 bl b12 b1,3
909 3 B bz,o bz, bz,z 2,3
930|831 93] 33 b3,o b3, 32| V33

Operations are often

well-defined and

repetitive

= 14-rounds for AES256

= Trial-and-error for
bitcoin mining

= Standardized protocols

ASIC allows

optimized pipelines

for specific behavior

Cryptographic Accelerator A‘l

N~ 4

A Cryptographic Accelerator is an add-on
component that allows software to leverage
custom ASICs for improved performance.

Usage: Crypto Accelerator A‘l

N~ 4

Primitive-Level Variant Protocol-Level Variant

Offload actions Offload layers

Software provides: Software provides:

= Action-specific input = Configuration
CT/PT/data/sig+data = Long-term secrets

= Instance-specific secret Accelerator provides:

Accelerator provides = Protocols negotiation

* Primitive algorithms « Primitive algorithms

= Action-specific output = Short-term secrets

= Plaintext messages

Oversimplified Descriptions AT

N~ 4

Security CPU Instructions

= Trusted actions in standard hardware
= Crypto Accelerator

» Fast, trusted actions in add-on hardware

Trusted Platform Module

A Trusted Platform Module (TPM) is
additional built-in, self-contained ASIC that
provides a central “root of trust” for a device.

TPM Internals

random number
generator
RSA key generator
SHA-1 hash generator

Storage Root
Key (SRK)

Platform Configuration
Registers (PCR)
Attestation Identity
Keys (AIK)

Includes suite of
crypto primitives
= RNG

= Algorithm
iImplementations

= Secure storage

Arbitrary control logic

= Timers, persistent
counters, etc

TPM

m

l Protects(using encryption)

&=

Storage Root Key (SRK)

‘/l\l’rolccm(using encryption)

Attestation Identity ~ Storage key Storage key
Key (AIK) 1 Protects(using encryption)

&=,

Storage key
‘ Protects{using encryption)

Secret data/Symmetric key

Secrets are either
generated on-board
or injected during
manufacturing

Derive many secrets
from single root
secret via KDF

IO O ool .
POOLS !:u! 3 '
e byl 8 :

Most commonly a
component on
motherboard

- Software treats as

black-box operations

= Hardened, well-defined
interface for use

TPM validates

firmware signature
before booting

If invalid, refuse to
launch bootloader

Used as foundational
trust for validating
higher-level software

Usage: Out-of-Band Secret A‘l

N~ 4

TPM available over
removable USB

Explicit trust
boundary

Greatly improved
usability with strong
security properties

Oversimplified Descriptions A‘l

N~ 4

Security CPU Instructions

= Trusted actions in standard hardware
Crypto Accelerator

» Fast, trusted actions in add-on hardware
Trusted Platform Module

= Trusted actions in built-in hardware w/ keys

Hardware Security Module A‘l

N~ 4

A Hardware Security Module (HSM) is a
special-purpose add-on component that
securely stores cryptographic keys and
performs cryptographic operations.

Hardware Security Module AT

N~ 4

= High-performance
operations

« Restricted logic
= Most commonly used

080 for signing operations
LY. =
A & = Commonly available
o T T ° “in the cloud” for use
o with AWS/GCP/...

Oversimplified Descriptions A‘l
N\ 4

Security CPU Instructions
= Trusted actions in standard hardware
Crypto Accelerator

» Fast, trusted actions in add-on hardware
Trusted Platform Module

= Trusted actions in built-in hardware w/ keys
Hardware Security Module

= Fast, trusted actions in add-on hardware w/ keys

Trusted Computing Base A‘l

N~ 4

The Trusted Computing Base (TCB) is the
collection of all components within a system
critical to providing security properties.

— Applications -

= Operating

|ﬂ_‘ System | I
HyperVisor

Resource Abstr: and
Control Layer
Physical Resource Layer

Hardware '
Facility]
A
Figure 15: Cloud Provider - Service Orchestration

IaaS] /
Resource Abstraction and
Control Layer
Physical Resource Layer \
Hardware '
Facility]

/

4

SaaS: Software

= Office 365
PaaS: Platform

= Elastic Container Service
laaS: Infrastructure

« EC2 Instances
<many more layers of
Internal services>

All on top of
Local TCB

Cloud Computing Architecture)

T
TCB ~r

Cloud Provider
Cloud
& Cloud Service Orchestration \ Broker
onsumer
Saxvice Layer \ Cloud Service
ach == Management
ez Service
Paas . - Intermediation
Cloud ‘ ad ; T
A.di‘or TAR XD \
laa$ l -E. B‘ Service
Y\ s
Security E Aggregation
Audit Resource Abstraction and
‘ " Service]
A -

Privacy Arbitrage
Impact Adit ‘ Physical Resource Layer _ |
Performance : M b e

Audit Facility])
r ‘

Cloud Carrier

Computer and Network
SY-1dV] 14Y

Lecture 14:
OS & Hardware Security

Course Notes A‘l

\ 4

Project 1A grades posted
Exam 1 grades posted
Midterm on Tuesday

=Distance: Identify proctor

and schedule
Same style/format/approach as Exam 1
= Multiple choice, True/False, Matching, etc.
= Short-answers for grad-section
= Bonus available but low point value

Course Notes

= Project 2 due next Friday (100ct2025)
= If you haven't started..

1 WOULD S“GEES’I’
GETI'INE ON]] 'I'IIA'I'

.‘ | ,,._/
BUT THAT'S
NONE OF MY BUSINESS

Computer and Network
SY-1dV] 14Y

Lecture 14:
OS & Hardware Security

